1
|
Targeted Sequencing Identifies the Genetic Variants Associated with High-altitude Polycythemia in the Tibetan Population. Indian J Hematol Blood Transfus 2021; 38:556-565. [PMID: 35747576 PMCID: PMC9209555 DOI: 10.1007/s12288-021-01474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
High-altitude polycythemia (HAPC) is characterized by excessive proliferation of erythrocytes, resulting from the hypobaric hypoxia condition in high altitude. The genetic variants and molecular mechanisms of HAPC remain unclear in highlanders. We recruited 141 Tibetan dwellers, including 70 HAPC patients and 71 healthy controls, to detect the possible genetic variants associated with the disease; and performed targeted sequencing on 529 genes associated with the oxygen metabolism and erythrocyte regulation, utilized unconditional logistic regression analysis and GO (gene ontology) analysis to investigate the genetic variations of HAPC. We identified 12 single nucleotide variants, harbored in 12 genes, associated with the risk of HAPC (4.7 ≤ odd ratios ≤ 13.6; 7.6E − 08 ≤ p-value ≤ 1E − 04). The pathway enrichment study of these genes indicated the three pathways, the PI3K-AKT pathway, JAK-STAT pathway, and HIF-1 pathway, are essential, which p-values as 3.70E − 08, 1.28 E − 07, and 3.98 E − 06, respectively. We are hopeful that our results will provide a reference for the etiology research of HAPC. However, additional genetic risk factors and functional investigations are necessary to confirm our results further.
Collapse
|
2
|
Otto PI, Guimarães SEF, Calus MPL, Vandenplas J, Machado MA, Panetto JCC, da Silva MVGB. Single-step genome-wide association studies (GWAS) and post-GWAS analyses to identify genomic regions and candidate genes for milk yield in Brazilian Girolando cattle. J Dairy Sci 2020; 103:10347-10360. [PMID: 32896396 DOI: 10.3168/jds.2019-17890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Milk production is economically important to the Brazilian agribusiness, and the majority of the country's milk production derives from Girolando (Gir × Holstein) cows. This study aimed to identify quantitative trait loci (QTL) and candidate genes associated with 305-d milk yield (305MY) in Girolando cattle. In addition, we investigated the SNP-specific variances for Holstein and Gir breeds of origin within the sequence of candidate genes. A single-step genomic BLUP procedure was used to identify QTL associated with 305MY, and the most likely candidate genes were identified through follow-up analyses. Genomic breeding values specific for Holstein and Gir were estimated in the Girolando animals using a model that uses breed-specific partial relationship matrices, which were converted to breed of origin SNP effects. Differences between breed of origin were evaluated by comparing estimated SNP variances between breeds. From 10 genome regions explaining most additive genetic variance for 305MY in Girolando cattle, 7 candidate genes were identified on chromosomes 1, 4, 6, and 26. Within the sequence of these 7 candidate genes, Gir breed of origin SNP alleles showed the highest genetic variance. These results indicated QTL regions that could be further explored in genomic selection panels and which may also help in understanding the gene mechanisms involved in milk production in the Girolando breed.
Collapse
Affiliation(s)
- Pamela I Otto
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Simone E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Mario P L Calus
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Jeremie Vandenplas
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Marco A Machado
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - João Cláudio C Panetto
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | | |
Collapse
|
3
|
Singh K, Phyn C, Reinsch M, Dobson J, Oden K, Davis S, Stelwagen K, Henderson H, Molenaar A. Temporal and spatial heterogeneity in milk and immune-related gene expression during mammary gland involution in dairy cows. J Dairy Sci 2017; 100:7669-7685. [DOI: 10.3168/jds.2017-12572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/05/2017] [Indexed: 11/19/2022]
|
4
|
Singh K, Vetharaniam I, Dobson J, Prewitz M, Oden K, Murney R, Swanson K, McDonald R, Henderson H, Stelwagen K. Cell survival signaling in the bovine mammary gland during the transition from lactation to involution. J Dairy Sci 2016; 99:7523-7543. [DOI: 10.3168/jds.2015-10515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/01/2016] [Indexed: 12/31/2022]
|
5
|
Medina-Estrada I, Alva-Murillo N, López-Meza JE, Ochoa-Zarzosa A. Non-classical effects of prolactin on the innate immune response of bovine mammary epithelial cells: Implications during Staphylococcus aureus internalization. Microb Pathog 2015; 89:43-53. [PMID: 26341952 DOI: 10.1016/j.micpath.2015.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/24/2015] [Accepted: 08/24/2015] [Indexed: 11/17/2022]
Abstract
Staphylococcus aureus has the ability to invade mammary epithelial cells (bMECs) causing mastitis. This event depends primarily on the α5β1 integrin in the host cell. In addition, bMECs are a target for the hormone prolactin (PRL), which can regulate β1 integrin-dependent actions related to differentiation and lactation. Previously, we demonstrated that bovine PRL (bPRL, 5 ng/ml) stimulates S. aureus internalization into bMECs. TLR2 is important during S. aureus infections, but its activation by PRL has not yet been established. The objective of this study was to determine the role of α5β1 integrin and TLR2 during S. aureus internalization into bMECs stimulated with bPRL. We demonstrated that the prolactin-stimulated internalization of S. aureus decreases in response to the blockage of α5β1 integrin (∼ 80%) and TLR2 (∼ 80%). bPRL increases the membrane abundance (MA) of α5β1 integrin (∼ 20%) and induces TLR2 MA (∼ 2-fold). S. aureus reduces the α5β1 integrin MA in bMECs treated with bPRL (∼ 75%) but induces TLR2 MA in bMECs (∼ 3-fold). Bacteria and bPRL did not modify TLR2 MA compared with the hormone alone. S. aureus induces the activation of the transcription factor AP-1, which was inhibited in bMECs treated with bPRL and infected. In general, bPRL induces both pro- and anti-inflammatory responses in bMECs, which are abated in response to bacterial challenge. Interestingly, the canonical Stat-5 transcription factor was not activated in the challenged bMECs and/or treated with bPRL. Taken together, these results support novel functions of prolactin as a modulator of the innate immune response that do not involve the classical prolactin pathway.
Collapse
Affiliation(s)
- Ivan Medina-Estrada
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico
| | - Nayeli Alva-Murillo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico
| | - Joel E López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico
| | - Alejandra Ochoa-Zarzosa
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, C.P. 58893, Morelia, Michoacán, Mexico.
| |
Collapse
|
6
|
Murney R, Stelwagen K, Wheeler T, Margerison J, Singh K. Activation of signal transducer and activator of transcription 5 (STAT5) is linked to β1-integrin protein abundance in unilaterally milked bovine mammary glands. J Dairy Sci 2015; 98:3133-42. [DOI: 10.3168/jds.2014-9003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022]
|
7
|
Bertucci PY, Quaglino A, Pozzi AG, Kordon EC, Pecci A. Glucocorticoid-induced impairment of mammary gland involution is associated with STAT5 and STAT3 signaling modulation. Endocrinology 2010; 151:5730-40. [PMID: 20881248 DOI: 10.1210/en.2010-0517] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mammary epithelium undergoes cyclical periods of cellular proliferation, differentiation, and regression. During lactation, the signal transducer and activator of transcription factor (STAT)-5A and the glucocorticoid receptor (GR) synergize to induce milk protein expression and also act as survival factors. During involution, STAT3 activation mediates epithelial cell apoptosis and mammary gland remodeling. It has been shown that the administration of glucocorticoids at weaning prevents epithelial cell death, probably by extracellular matrix breakdown prevention. Our results show that the synthetic glucocorticoid dexamethasone (DEX) modulates STAT5A and STAT3 signaling and inhibits apoptosis induction in postlactating mouse mammary glands, only when administered within the first 48 h upon cessation of suckling. DEX administration right after weaning delayed STAT5A inactivation and degradation, preserving gene expression of target genes as β-casein (bcas) and prolactin induced protein (pip). Weaning-triggered GR down-regulation is also delayed by the hormone treatment. Moreover, DEX administration delayed STAT3 activation and translocation into epithelial cells nuclei. In particular, DEX treatment impaired the increment in gene expression of signal transducer subunit gp130, normally up-regulated from lactation to involution and responsible for STAT3 activation. Therefore, the data shown herein indicate that glucocorticoids are able to modulate early involution by controlling the strong cross talk that GR, STAT5, and STAT3 pathways maintains in the mammary epithelium.
Collapse
Affiliation(s)
- Paola Y Bertucci
- Instituto de Fisiología Biología y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
8
|
Tiffen PG, Omidvar N, Marquez-Almuina N, Croston D, Watson CJ, Clarkson RWE. A dual role for oncostatin M signaling in the differentiation and death of mammary epithelial cells in vivo. Mol Endocrinol 2008; 22:2677-88. [PMID: 18927239 DOI: 10.1210/me.2008-0097] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent studies in breast cancer cell lines have shown that oncostatin M (OSM) not only inhibits proliferation but also promotes cell detachment and enhances cell motility. In this study, we have looked at the role of OSM signaling in nontransformed mouse mammary epithelial cells in vitro using the KIM-2 mammary epithelial cell line and in vivo using OSM receptor (OSMR)-deficient mice. OSM and its receptor were up-regulated approximately 2 d after the onset of postlactational mammary regression, in response to leukemia inhibitory factor (LIF)-induced signal transducer and activator of transcription-3 (STAT3). This resulted in sustained STAT3 activity, increased epithelial apoptosis, and enhanced clearance of epithelial structures during the remodeling phase of mammary involution. Concurrently, OSM signaling precipitated the dephosphorylation of STAT5 and repressed expression of the milk protein genes beta-casein and whey acidic protein (WAP). Similarly, during pregnancy, OSM signaling suppressed beta-casein and WAP gene expression. In vitro, OSM but not LIF persistently down-regulated phosphorylated (p)-STAT5, even in the continued presence of prolactin. OSM also promoted the expression of metalloproteinases MMP3, MMP12, and MMP14, which, in vitro, were responsible for OSM-specific apoptosis. Thus, the sequential activation of IL-6-related cytokines during mammary involution culminates in an OSM-dependent repression of epithelial-specific gene expression and the potentiation of epithelial cell extinction mediated, at least in part, by the reciprocal regulation of p-STAT5 and p-STAT3.
Collapse
Affiliation(s)
- Paul G Tiffen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|