1
|
Arana ÁJ, Sánchez L. Knockout, Knockdown, and the Schrödinger Paradox: Genetic Immunity to Phenotypic Recapitulation in Zebrafish. Genes (Basel) 2024; 15:1164. [PMID: 39336755 PMCID: PMC11431394 DOI: 10.3390/genes15091164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Previous research has highlighted significant phenotypic discrepancies between knockout and knockdown approaches in zebrafish, raising concerns about the reliability of these methods. However, our study suggests that these differences are not as pronounced as was once believed. By carefully examining the roles of maternal and zygotic gene contributions, we demonstrate that these factors significantly influence phenotypic outcomes, often accounting for the observed discrepancies. Our findings emphasize that morpholinos, despite their potential off-target effects, can be effective tools when used with rigorous controls. We introduce the concept of graded maternal contribution, which explains how the uneven distribution of maternal mRNA and proteins during gametogenesis impacts phenotypic variability. Our research categorizes genes into three types-susceptible, immune, and "Schrödinger" (conditional)-based on their phenotypic expression and interaction with genetic compensation mechanisms. This distinction provides new insights into the paradoxical outcomes observed in genetic studies. Ultimately, our work underscores the importance of considering both maternal and zygotic contributions, alongside rigorous experimental controls, to accurately interpret gene function and the mechanisms underlying disease. This study advocates for the continued use of morpholinos in conjunction with advanced genetic tools like CRISPR/Cas9, stressing the need for a meticulous experimental design to optimize the utility of zebrafish in genetic research and therapeutic development.
Collapse
|
2
|
Palomino J, Gómez C, Otarola MT, Dettleff P, Patiño-García D, Orellana R, Moreno RD. Embryo Buoyancy and Cell Death Gene Expression During Embryogenesis of Yellow-Tail Kingfish Seriola lalandi. Front Cell Dev Biol 2021; 9:630947. [PMID: 33816479 PMCID: PMC8012911 DOI: 10.3389/fcell.2021.630947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
In pelagic fish, embryo buoyancy is a noteworthy aspect of the reproductive strategy, and is associated with overall quality, survival, and further developmental success. In captivity, the loss of buoyancy of early embryos correlates with high mortality that might be related to massive cell death. Therefore, the aim of this study was to evaluate under captivity conditions the expression of genes related to the apoptosis process during the early embryonic development of the pelagic fish Seriola lalandi, and its relationship to the buoyancy of embryos. The relative expression of bcl2, bax-like, casp9, casp8, and casp3 was evaluated by RT-qPCR and FasL/Fas protein levels by western blot in five development stages of embryos sorted as floating or low-floating. All genes examined were expressed in both floating and low-floating embryos up to 24 h of development. Expression of the pro-apoptotic factors bax, casp9, casp8, and casp3 was higher in low-floating as compared with floating embryos in a developmental stage-specific manner. In contrast, there was no difference in expression of bcl2 between floating and low-floating embryos. Fas protein was detected as a single band in floating embryos without changes in expression throughout development; however, in low-floating embryos, three higher intensity reactive bands were detected in the 24-h embryos. Interestingly, FasL was only detected at 24-h in floating embryos, whereas in low-floating samples this ligand was present at all stages, with a sharp increase as development progressed. Cell death, as evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay, was highly increased in low-floating embryos as compared to floating embryos throughout all developmental stages, with the highest levels observed during the gastrula stage and at 24 h. The results of this study suggest that an increase in cell death, probably associated with the intrinsic and extrinsic apoptosis pathways, is present in low-floating embryos that might explain their lower developmental potential under captivity conditions.
Collapse
Affiliation(s)
- Jaime Palomino
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Reproducción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Camila Gómez
- Laboratorio de Reproducción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - María Teresa Otarola
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratorio de Reproducción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Phillip Dettleff
- Laboratorio FAVET-INBIOGEN, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Sede La Florida, Santiago, Chile
| | - Daniel Patiño-García
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Quiímicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Renan Orellana
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Quiímicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Ricardo D Moreno
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Robinson PC, Littler HR, Lange A, Santos EM. Developmental exposure window influences silver toxicity but does not affect the susceptibility to subsequent exposures in zebrafish embryos. Histochem Cell Biol 2020; 154:579-595. [PMID: 33083906 PMCID: PMC7609441 DOI: 10.1007/s00418-020-01933-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 01/07/2023]
Abstract
Silver is a non-essential, toxic metal widespread in freshwaters and capable of causing adverse effects to wildlife. Its toxic effects have been studied in detail but less is known about how sensitivity varies during development and whether pre-exposures affect tolerance upon re-exposure. We address these knowledge gaps using the zebrafish embryo (Danio rerio) model to investigate whether exposures encompassing stages of development prior to mid-blastula transition, when chorion hardening and epigenetic reprogramming occur, result in greater toxicity compared to those initiated after this period. We conducted exposures to silver initiated at 0.5 h post fertilisation (hpf) and 4 hpf to determine if toxicity differed. In parallel, we exposed embryos to the methylation inhibitor 5-azacytidine as a positive control. Toxicity increased when exposures started from 0.5 hpf compared to 4 hpf and LC50 were significantly lower by 1.2 and 7.6 times for silver and 5-azacyitidine, respectively. We then investigated whether pre-exposure to silver during early development (from 0.5 or 4 hpf) affected the outcome of subsequent exposures during the larvae stage, and found no alterations in toxicity compared to naïve larvae. Together, these data demonstrate that during early development zebrafish embryos are more sensitive to silver when experiments are initiated at the one-cell stage, but that pre-exposures do not influence the outcome of subsequent exposures, suggesting that no long-lasting memory capable of influencing future susceptibility was maintained under our experimental conditions. The finding that toxicity is greater for exposures initiated at the one-cell stage has implications for designing testing systems to assess chemical toxicity.
Collapse
Affiliation(s)
- Paige C Robinson
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK.
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 8UB, Dorset, UK.
| | - Hannah R Littler
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
- Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, The Nothe, Weymouth, DT4 8UB, Dorset, UK
| | - Anke Lange
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK
| | - Eduarda M Santos
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Exeter, EX4 4QD, UK.
- Sustainable Aquaculture Futures, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
4
|
Babu A, Kamaraj M, Basu M, Mukherjee D, Kapoor S, Ranjan S, Swamy MM, Kaypee S, Scaria V, Kundu TK, Sachidanandan C. Chemical and genetic rescue of an ep300 knockdown model for Rubinstein Taybi Syndrome in zebrafish. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1203-1215. [PMID: 29409755 DOI: 10.1016/j.bbadis.2018.01.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/08/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
Abstract
EP300 is a member of the EP300/CBP family of lysine acetyltransferases (KATs) with multiple roles in development and physiology. Loss of EP300/CBP activity in humans causes a very rare congenital disorder called Rubinstein Taybi Syndrome (RSTS). The zebrafish genome has two co-orthologs of lysine acetyltransferase EP300 (KAT3B) in zebrafish viz. ep300a and ep300b. Chemical inhibition of Ep300 with C646, a competitive inhibitor and morpholino-based genetic knockdown of ep300a and ep300b cause defects in embryonic development reminiscent of the human RSTS syndrome. Remarkably, overexpression of Ep300a KAT domain results in near complete rescue of the jaw development defects, a characteristic feature of RSTS in human suggesting the dispensability of the protein-interaction and DNA-binding domains for at least some developmental roles of Ep300. We also perform a chemical screen and identify two inhibitors of deacetylases, CHIC35 and HDACi III, that can partially rescue the RSTS-like phenotypes. Thus, modeling rare human genetic disorders in zebrafish allows for functional understanding of the genes involved and can also yield small molecule candidates towards therapeutic goals.
Collapse
Affiliation(s)
- Aswini Babu
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Mageshi Kamaraj
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India
| | - Moumita Basu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Debanjan Mukherjee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Shruti Kapoor
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Shashi Ranjan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India
| | - Mahadeva M Swamy
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Stephanie Kaypee
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India
| | - Vinod Scaria
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru 560064, India.
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India.
| |
Collapse
|
5
|
Mahale S, Kumar M, Sharma A, Babu A, Ranjan S, Sachidanandan C, Mylavarapu SVS. The Light Intermediate Chain 2 Subpopulation of Dynein Regulates Mitotic Spindle Orientation. Sci Rep 2016; 6:22. [PMID: 28003657 PMCID: PMC5431351 DOI: 10.1038/s41598-016-0030-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic dynein 1 is a multi-protein intracellular motor essential for mediating several mitotic functions, including the establishment of proper spindle orientation. The functional relevance and mechanistic distinctions between two discrete dynein subpopulations distinguished only by Light Intermediate Chain (LIC) homologues, LIC1 and LIC2 is unknown during mitosis. Here, we identify LIC2-dynein as the major mediator of proper spindle orientation and uncover its underlying molecular mechanism. Cortically localized dynein, essential for maintaining correct spindle orientation, consists majorly of LIC2-dynein, which interacts with cortical 14-3-3 ε- ζ and Par3, conserved proteins required for orienting the spindle. LIC2-dynein is also responsible for the majority of dynein-mediated asymmetric poleward transport of NuMA, helping focus microtubule minus ends. In addition, LIC2-dynein dominates in equatorially aligning chromosomes at metaphase and in regulating mitotic spindle length. Key mitotic functions of LIC2 were remarkably conserved in and essential for early embryonic divisions and development in zebrafish. Thus LIC2-dynein exclusively engages with two major cortical pathways to govern spindle orientation. Overall, we identify a novel selectivity of molecular interactions between the two LICs in mitosis as the underlying basis for their uneven distribution of labour in ensuring proper spindle orientation.
Collapse
Affiliation(s)
- Sagar Mahale
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.,Affiliated to Manipal University, Manipal, Karnataka, 576104, India
| | - Megha Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Amit Sharma
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.,Affiliated to Manipal University, Manipal, Karnataka, 576104, India
| | - Aswini Babu
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Shashi Ranjan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India. .,Affiliated to Manipal University, Manipal, Karnataka, 576104, India.
| |
Collapse
|
6
|
Asad Z, Pandey A, Babu A, Sun Y, Shevade K, Kapoor S, Ullah I, Ranjan S, Scaria V, Bajpai R, Sachidanandan C. Rescue of neural crest-derived phenotypes in a zebrafish CHARGE model by Sox10 downregulation. Hum Mol Genet 2016; 25:3539-3554. [PMID: 27418670 PMCID: PMC5179949 DOI: 10.1093/hmg/ddw198] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 05/27/2016] [Accepted: 06/20/2016] [Indexed: 12/20/2022] Open
Abstract
CHD7 mutations are implicated in a majority of cases of the congenital disorder, CHARGE syndrome. CHARGE, an autosomal dominant syndrome, is known to affect multiple tissues including eye, heart, ear, craniofacial nerves and skeleton and genital organs. Using a morpholino-antisense-oligonucleotide-based zebrafish model for CHARGE syndrome, we uncover a complex spectrum of abnormalities in the neural crest and the crest-derived cell types. We report for the first time, defects in myelinating Schwann cells, enteric neurons and pigment cells in a CHARGE model. We also observe defects in the specification of peripheral neurons and the craniofacial skeleton as previously reported. Chd7 morphants have impaired migration of neural crest cells and deregulation of sox10 expression from the early stages. Knocking down Sox10 in the zebrafish CHARGE model rescued the defects in Schwann cells and craniofacial cartilage. Our zebrafish CHARGE model thus reveals important regulatory roles for Chd7 at multiple points of neural crest development viz., migration, fate choice and differentiation and we suggest that sox10 deregulation is an important driver of the neural crest-derived aspects of Chd7 dependent CHARGE syndrome.
Collapse
Affiliation(s)
- Zainab Asad
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Aditi Pandey
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Aswini Babu
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Yuhan Sun
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kaivalya Shevade
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shruti Kapoor
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Ikram Ullah
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Shashi Ranjan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
| | - Vinod Scaria
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| | - Ruchi Bajpai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry and Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics & Integrative Biology, South Campus, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, 110025, India and
| |
Collapse
|
7
|
Alix M, Chardard D, Ledoré Y, Fontaine P, Schaerlinger B. An alternative developmental table to describe non-model fish species embryogenesis: application to the description of the Eurasian perch (Perca fluviatilis L. 1758) development. EvoDevo 2015; 6:39. [PMID: 26688712 PMCID: PMC4683842 DOI: 10.1186/s13227-015-0033-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fish correspond to the most diversified phylum among vertebrates with a large variety of species. Even if general features are distinguishable during the embryogenesis, several differences in term of timing, organ implementation or step progression always occur between species. Moreover, the developmental timing of wild non-model fish often presents variability within a species. In that context, it is necessary to define a model of developmental table flexible enough to describe fish development by integrating this variability and allow intra- and inter-specific comparisons. The elaboration of a model passes by the definition of new stages that could be easily observable on individuals. The present study aims at proposing such a model and describing accurately the Eurasian perch (Perca fluviatilis) embryogenesis using microscopic techniques among which time lapse video and histological studies. The Eurasian perch belongs to the Percidae family that includes 235 species classified in 11 genera. It is a member of the Perca gender and inhabits the Northern part of Europe and Asia. RESULTS At 13 °C, P. fluviatilis development elapses for 15 days from the fertilization to the first oral feeding. The staging division first took into account the cellular status to define periods, then the acquisition of new abilities by the embryo to further define stages. It allowed distinguishing two main stages during the cell cleavage period depending on the synchronization of the cell divisions, two stages during the gastrulation period depending on the cell speed migration and five stages during the organogenesis according to the acquisition of key abilities as proposed in the saltatory theory. During each stage, organs implementation was carefully followed with a particular attention for the visual and digestive systems. In addition, our study shows that embryos hatch at various developmental stages while they all begin to feed at a fixed date, 15 days after the fertilization whatever the spawn and the hatching date. These data give arguments to propose the first oral feeding as the best definition of the embryonic-to-larval transition. CONCLUSIONS The present model of developmental table combines flexibility and accuracy allowing detailed description of non-model fish species and intra- and inter-specific comparisons.
Collapse
Affiliation(s)
- Maud Alix
- UR AFPA, Université de Lorraine-INRA, 2 Avenue de la Forêt de Haye, BP 172, 54505 Vandœuvre-lès-Nancy, France
| | - Dominique Chardard
- UR AFPA, Université de Lorraine-INRA, 2 Avenue de la Forêt de Haye, BP 172, 54505 Vandœuvre-lès-Nancy, France
| | - Yannick Ledoré
- UR AFPA, Université de Lorraine-INRA, 2 Avenue de la Forêt de Haye, BP 172, 54505 Vandœuvre-lès-Nancy, France
| | - Pascal Fontaine
- UR AFPA, Université de Lorraine-INRA, 2 Avenue de la Forêt de Haye, BP 172, 54505 Vandœuvre-lès-Nancy, France
| | - Berenice Schaerlinger
- UR AFPA, Université de Lorraine-INRA, 2 Avenue de la Forêt de Haye, BP 172, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
8
|
Heyn P, Kircher M, Dahl A, Kelso J, Tomancak P, Kalinka AT, Neugebauer KM. The earliest transcribed zygotic genes are short, newly evolved, and different across species. Cell Rep 2014; 6:285-92. [PMID: 24440719 DOI: 10.1016/j.celrep.2013.12.030] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/04/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022] Open
Abstract
The transition from maternal to zygotic control is fundamental to the life cycle of all multicellular organisms. It is widely believed that genomes are transcriptionally inactive from fertilization until zygotic genome activation (ZGA). Thus, the earliest genes expressed probably support the rapid cell divisions that precede morphogenesis and, if so, might be evolutionarily conserved. Here, we identify the earliest zygotic transcripts in the zebrafish, Danio rerio, through metabolic labeling and purification of RNA from staged embryos. Surprisingly, the mitochondrial genome was highly active from the one-cell stage onwards, showing that significant transcriptional activity exists at fertilization. We show that 592 nuclear genes become active when cell cycles are still only 15 min long, confining expression to relatively short genes. Furthermore, these zygotic genes are evolutionarily younger than those expressed at other developmental stages. Comparison of fish, fly, and mouse data revealed different sets of genes expressed at ZGA. This species specificity uncovers an evolutionary plasticity in early embryogenesis that probably confers substantial adaptive potential.
Collapse
Affiliation(s)
- Patricia Heyn
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Martin Kircher
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | - Andreas Dahl
- Deep Sequencing Group SFB 655, DFG Research Center for Regenerative Therapies (CRTD), Biotechnology Center (Biotec), Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | - Alex T Kalinka
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Karla M Neugebauer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
9
|
Wada T, Hara M, Taneda T, Qingfu C, Takata R, Moro K, Takeda K, Kishimoto T, Handa H. Antisense morpholino targeting just upstream from a poly(A) tail junction of maternal mRNA removes the tail and inhibits translation. Nucleic Acids Res 2012; 40:e173. [PMID: 22904086 PMCID: PMC3526265 DOI: 10.1093/nar/gks765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene downregulation by antisense morpholino oligonucleotides (MOs) is achieved by either hybridization around the translation initiation codon or by targeting the splice donor site. In the present study, an antisense MO method is introduced that uses a 25-mer MO against a region at least 40-nt upstream from a poly(A) tail junction in the 3'-untranslated region (UTR) of maternal mRNA. The MO removed the poly(A) tail and blocked zebrafish cdk9 (zcdk9) mRNA translation, showing functional mimicry between miRNA and MO. A PCR-based assay revealed MO-mediated specific poly(A) tail removal of zebrafish mRNAs, including those for cyclin B1, cyclin B2 and tbp. The MO activity targeting cyclins A and B mRNAs was validated in unfertilized starfish oocytes and eggs. The MO removed the elongated poly(A) tail from maternal matured mRNA. This antisense method introduces a new application for the targeted downregulation of maternal mRNAs in animal oocytes, eggs and early embryos.
Collapse
Affiliation(s)
- Tadashi Wada
- Division of Molecular and Cellular Biology, Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Olsvik PA, Berntssen MHG, Hylland K, Eriksen DØ, Holen E. Low impact of exposure to environmentally relevant doses of 226Ra in Atlantic cod (Gadus morhua) embryonic cells. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2012; 109:84-93. [PMID: 22388182 DOI: 10.1016/j.jenvrad.2012.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/01/2012] [Accepted: 02/06/2012] [Indexed: 05/31/2023]
Abstract
The aim of this study was to investigate whether (226)Ra, a radionuclide present in produced water from oil platforms in the North Sea and other offshore drilling areas, could affect vulnerable early life stages of Atlantic cod (Gadus morhua). Blastula-stage embryonic cells (EC) from fertilized eggs of Atlantic cod were isolated and exposed to environmental relevant concentrations of (226)Ra and transcription of selected genes quantified. The results showed a weak, but significant up-regulation of GPx3 and HSP70 transcripts after 48 h of exposure to 2.11 Bq/L. In EC exposed to three (226)Ra concentrations (2.11, 23 and 117 Bq/L) for 12 h, metallothionein, HSP90AA, thioredoxin and caspase 8 were significantly up-regulated in cells exposed to 117 Bq/L, whereas thioredoxin was also significantly up-regulated in EC exposed to 23 Bq/L. When EC were exposed to the same (226)Ra concentrations for 48 h, only heme oxygenase was significantly up-regulated in the 23 Bq/L exposure group. The results suggest that environmentally relevant activities of (226)Ra may induce oxidative stress and apoptosis in fish ECs. Exposure of Atlantic cod EC to Cd, selected as a model toxicant, supported the ability of EC around blastula stage to respond to toxicants by altered transcription. Due to dilution, environmentally relevant concentrations of radionuclides present in produced water would be expected to pose a minor threat to early life stages of fish.
Collapse
Affiliation(s)
- Pål A Olsvik
- National Institute of Nutrition and Seafood Research, PO Box 2029 Nordnes, N-5817 Bergen, Norway.
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Korzh VP, Minin AA. A short history of loach or why remember morphogenetic function of nuclei? The 50th anniversary of A.A. Neyfakh’s discovery of the morphogenetic function of the nucleus. Russ J Dev Biol 2010. [DOI: 10.1134/s1062360410020086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Gehrig J, Reischl M, Kalmár É, Ferg M, Hadzhiev Y, Zaucker A, Song C, Schindler S, Liebel U, Müller F. Automated high-throughput mapping of promoter-enhancer interactions in zebrafish embryos. Nat Methods 2009; 6:911-6. [DOI: 10.1038/nmeth.1396] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/22/2009] [Indexed: 12/14/2022]
|
14
|
Korzh V. Before maternal-zygotic transition ... There was morphogenetic function of nuclei. Zebrafish 2009; 6:295-302. [PMID: 19566409 DOI: 10.1089/zeb.2008.0573] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The idea of a major developmental transition that includes the activation of the embryonic genome has a long history. In the 1950-1960s this concept was developed to a large extent due to the efforts of Alexander Neyfakh, who described a specific type of deleterious effect resulting from X-ray irradiation of fish eggs. He interpreted the radiation-sensitive target as the nucleus and established the onset of the function of the zygotic genome, naming it the morphogenetic function of nuclei, what we call now the midblastula transition. Most of his studies were performed using the loach (Misgurnus fossilis), a European teleost. Neyfakh's efforts paved the way to understanding the whole phenomenon of the maternal-zygotic transition.
Collapse
Affiliation(s)
- Vladimir Korzh
- Cancer and Developmental Cell Biology Division, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A-STAR), Singapore, Singapore.
| |
Collapse
|
15
|
Olsvik PA, Holen E. Characterization of an Atlantic cod (Gadus morhua) embryonic stem cell cDNA library. BMC Res Notes 2009; 2:74. [PMID: 19416549 PMCID: PMC2686721 DOI: 10.1186/1756-0500-2-74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 05/06/2009] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The Atlantic cod is an ecologically and economically important North Atlantic fish species and also an emerging aquaculture species. To study gene expression in Atlantic cod embryonic stem (ES) cells, our goal was to generate and analyze expressed sequence tags (ESTs) from an ES cell cDNA library of mRNA consisting of approximately 3,900 ESTs. RESULTS We sequenced 3,935 EST clones using a directional cDNA library made from pooled ES cells harvested at the blastula stage. Quality filtering of these ESTs allowed identification of 2,719 high-quality sequences with an average length of 442 bp containing 368 contigs and 1,276 singletons (1,644 unique sequences). BLASTX searches produced 889 significant (E-value < 10-3) hits, of which 698 (42.5%) were annotated with Gene Ontology terms (E-value < 10-6). The number of unknown unique sequences was 946 (57.5%). All the high-quality EST sequences have been deposited in GenBank (GenBank: 2,719 sequences in UniGene library dbEST id: 22,021). Gene discovery and annotations are presented and discussed. CONCLUSION This set of ESTs represents one of the first attempts to describe mRNA in ES cells from a marine cold-water fish species, and provides a basis for gene expression studies of Atlantic cod ES cells.
Collapse
Affiliation(s)
- Pål A Olsvik
- National Institute of Nutrition and Seafood Research, Nordnesboder 2, N-5005 Bergen, Norway
| | - Elisabeth Holen
- National Institute of Nutrition and Seafood Research, Nordnesboder 2, N-5005 Bergen, Norway
| |
Collapse
|
16
|
Tingaud-Sequeira A, Zapater C, Chauvigné F, Otero D, Cerdà J. Adaptive plasticity of killifish (Fundulus heteroclitus) embryos: dehydration-stimulated development and differential aquaporin-3 expression. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1041-52. [DOI: 10.1152/ajpregu.91002.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Embryos of the marine killifish Fundulus heteroclitus are adapted to survive aerially. However, it is unknown if they are able to control development under dehydration conditions. Here, we show that air-exposed blastula embryos under saturated relative humidity were able to stimulate development, and hence the time of hatching was advanced with respect to embryos continuously immersed in seawater. Embryos exposed to air at later developmental stages did not hatch until water was added, while development was not arrested. Air-exposed embryos avoided dehydration probably because of their thickened egg envelope, although it suffered significant evaporative water loss. The potential role of aquaporins as part of the embryo response to dehydration was investigated by cloning the aquaporin-0 (FhAqp0), -1a (FhAqp1a), and -3 (FhAqp3) cDNAs. Functional expression in Xenopus laevis oocytes showed that FhaAqp1a was a water-selective channel, whereas FhAqp3 was permeable to water, glycerol, and urea. Expression of fhaqp0 and fhaqp1a was prominent during organogenesis, and their mRNA levels were similar between water- and air-incubated embryos. However, fhaqp3 transcripts were highly and transiently accumulated during gastrulation, and the protein product was localized in the basolateral membrane of the enveloping epithelial cell layer and in the membrane of ingressing and migrating blastomers. Interestingly, both fhaqp3 transcripts and FhAqp3 polypeptides were downregulated in air-exposed embryos. These data demonstrate that killifish embryos respond adaptively to environmental desiccation by accelerating development and that embryos are able to transduce dehydration conditions into molecular responses. The reduced synthesis of FhAqp3 may be one of these mechanisms to regulate water and/or solute transport in the embryo.
Collapse
|
17
|
Martin ED, Moriarty MA, Byrnes L, Grealy M. Plakoglobin has both structural and signalling roles in zebrafish development. Dev Biol 2008; 327:83-96. [PMID: 19101534 DOI: 10.1016/j.ydbio.2008.11.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 11/21/2008] [Accepted: 11/25/2008] [Indexed: 11/18/2022]
Abstract
Plakoglobin, or gamma-catenin, is found in both desmosomes and adherens junctions and participates in Wnt signalling. Mutations in the human gene are implicated in the congenital heart disorder, arrhythmogenic right ventricular cardiomyopathy (ARVC), but the signalling effects of plakoglobin loss in ARVC have not been established. Here we report that knockdown of plakoglobin in zebrafish results in decreased heart size, reduced heartbeat, cardiac oedema, reflux of blood between heart chambers and a twisted tail. Wholemount in situ hybridisation shows reduced expression of the heart markers nkx2.5 at 24 hours post fertilisation (hpf), and cmlc2 and vmhc at 48 hpf, while there is lack of restriction of the valve markers notch1b and bmp4 at 48 hpf. Wnt target gene expression was examined by semi-quantitative RT-PCR and found to be increased in morphant embryos indicating that plakoglobin is antagonistic to Wnt signalling. Co-expression of the Wnt inhibitor, Dkk1, rescues the cardiac phenotype of the plakoglobin morphant. beta-catenin protein expression is increased in morphant embryos as is its colocalisation with E-cadherin in adherens junctions. Endothelial cells at the atrioventricular boundary of morphant hearts have an aberrant morphology, indicating problems with valvulogenesis. Morphants also have decreased numbers of desmosomes and adherens junctions in the intercalated discs. These results establish the zebrafish as a model for ARVC caused by loss of plakoglobin function and indicate that there are signalling as well as structural consequences of this loss.
Collapse
Affiliation(s)
- Eva D Martin
- Department of Pharmacology and Therapeutics and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland
| | | | | | | |
Collapse
|
18
|
Lv W, Zhang Y, Wu Z, Chu L, Koide SS, Chen Y, Yan Y, Li Y. Identification of WSB1 gene as an important regulator in the development of zebrafish embryo during midblastula transition. Acta Biochim Biophys Sin (Shanghai) 2008; 40:478-88. [PMID: 18535746 DOI: 10.1111/j.1745-7270.2008.00427.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To uncover novel genes potentially involved in embryo development, especially at the midblastula transition (MBT) phase in the developing embryo of zebrafish, Affymetrix zebrafish GeneChip microarray analysis was carried out on the expression of 14,900 gene transcripts. The results of the analysis showed that 360 genes were clearly up-regulated and 119 genes were markedly down-regulated. Many of these genes were involved in transcription factor activity, nucleic acid binding, and cell growth. The present study showed that significant changes in transcript abundance occurred during the MBT phase. The expression of eight of these 479 genes was identified by reverse transcription-polymerase chain reaction analysis, confirming the microarray results. The WSB1 gene, found to be down-regulated by the microarray and reverse transcription-polymerase chain reaction analyses, was selected for further study. Sequence analysis of the WSB1 gene showed that it encodes a protein with 75% identity to the corresponding active human orthologs. In addition, WSB1 gene expression was detected at a higher level at 2 h post fertilization and at a lower level at 4 h post fertilization, consistent with the chip results. Overexpression of the WSB1 gene can result in the formation of abnormalities in embryos, as determined by fluorescence-activated cell sorting. The present study showed unequivocally that the occurrence of WSB1 expression is an important event during the MBT phase in the development of zebrafish embryos.
Collapse
Affiliation(s)
- Wenjian Lv
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Ferg M, Sanges R, Gehrig J, Kiss J, Bauer M, Lovas A, Szabo M, Yang L, Straehle U, Pankratz MJ, Olasz F, Stupka E, Müller F. The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish. EMBO J 2007; 26:3945-56. [PMID: 17703193 PMCID: PMC1950726 DOI: 10.1038/sj.emboj.7601821] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 07/16/2007] [Indexed: 12/01/2022] Open
Abstract
Early steps of embryo development are directed by maternal gene products and trace levels of zygotic gene activity in vertebrates. A major activation of zygotic transcription occurs together with degradation of maternal mRNAs during the midblastula transition in several vertebrate systems. How these processes are regulated in preparation for the onset of differentiation in the vertebrate embryo is mostly unknown. Here, we studied the function of TATA-binding protein (TBP) by knock down and DNA microarray analysis of gene expression in early embryo development. We show that a subset of polymerase II-transcribed genes with ontogenic stage-dependent regulation requires TBP for their zygotic activation. TBP is also required for limiting the activation of genes during development. We reveal that TBP plays an important role in the degradation of a specific subset of maternal mRNAs during late blastulation/early gastrulation, which involves targets of the miR-430 pathway. Hence, TBP acts as a specific regulator of the key processes underlying the transition from maternal to zygotic regulation of embryogenesis. These results implicate core promoter recognition as an additional level of differential gene regulation during development.
Collapse
Affiliation(s)
- Marco Ferg
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Remo Sanges
- Bioinformatics–CBM Scrl, AREA Science Park, Basovizza, Trieste, Italy
- CBM, AREA Science Park, Basovizza, Trieste, Italy
| | - Jochen Gehrig
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Janos Kiss
- Institute of Agricultural Biotechnology Centre, Gödöllõ, Hungary
| | - Matthias Bauer
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Agnes Lovas
- Leibniz Institute for Age Research, Jena, Germany
| | - Monika Szabo
- Institute of Agricultural Biotechnology Centre, Gödöllõ, Hungary
| | - Lixin Yang
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Uwe Straehle
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Michael J Pankratz
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Ferenc Olasz
- Institute of Agricultural Biotechnology Centre, Gödöllõ, Hungary
| | - Elia Stupka
- Bioinformatics–CBM Scrl, AREA Science Park, Basovizza, Trieste, Italy
- CBM, AREA Science Park, Basovizza, Trieste, Italy
- Bioinformatics–CBM Scrl, AREA Science Park, ss 14 km 163.5-Basovizza, Trieste 34012, Italy. E-mail:
| | - Ferenc Müller
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe, Herrmann von Helmholtz Platz 1, Eggenstein-Leopoldshafen 76021, Germany. Tel.: + 49 7247 823444; Fax: + 49 7247 823354; E-mail:
| |
Collapse
|
20
|
Recent Papers on Zebrafish and Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2007.9987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|