1
|
Jiang Z, Lu J, Tong Y, Yang H, Feng S. Enhancement of acid tolerance of Escherichia coli by introduction of molecule chaperone CbpA from extremophile. World J Microbiol Biotechnol 2023; 39:158. [PMID: 37046107 DOI: 10.1007/s11274-023-03613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Molecular chaperone CbpA from extreme acidophile Acidithiobacillus caldus was applied to improve acid tolerance of Escherichia coli via CRISPR/Cas9. Cell growth and viability of plasmid complementary strain indicated the importance of cbpAAc for bacteria acid tolerance. With in situ gene replacement by CRISPR/Cas9 system, colony formation unit (CFU) of genome recombinant strain BL21-ΔcbpA/AccbpA showed 7.7 times higher cell viability than deficient strain BL21-ΔcbpA and 2.3 times higher than wild type. Cell morphology observation using Field Emission Scanning Electron Microscopy (FESEM) revealed cell breakage of BL21-ΔcbpA and significant recovery of BL21-ΔcbpA/AccbpA. The intracellular ATP level of all strains gradually decreased along with the increased stress time. Particularly, the value of recombinant strain was 56.0% lower than that of deficient strain after 5 h, indicating that the recombinant strain consumed a lot of energy to resist acid stress. The arginine concentration in BL21-ΔcbpA/AccbpA was double that of BL21-ΔcbpA, while the aspartate and glutamate contents were 14.8% and 6.2% higher, respectively, compared to that of wild type. Moreover, RNA-Seq analysis examined 93 genes down-regulated in BL21-ΔcbpA compared to wild type strain, while 123 genes were up-regulated in BL21-ΔcbpA/AccbpA compared to BL21-ΔcbpA, with an emphasis on energy metabolism, transport, and cell components. Finally, the working model in response to acid stress of cbpA from A. caldus was developed. This study constructed a recombinant strain resistant to acid stress and also provided a reference for enhancing microorganisms' robustness to various conditions.
Collapse
Affiliation(s)
- Zhenming Jiang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jie Lu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Shoushuai Feng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
2
|
Fan X, Yuan Y, Zhang F, Ai L, Wu Z, Peng R. Expression, Rapid Purification and Functional Analysis of DnaK from Rhodococcus ruber. Protein Pept Lett 2021; 28:1023-1032. [PMID: 33645471 DOI: 10.2174/0929866528666210301150421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Heat shock proteins (HSPs) represent a group of important proteins which are produced by all kinds of organisms especially under stressful conditions. DnaK, an Hsp70 homolog in prokaryotes, has indispensable roles when microbes was confronted with stress conditions. However, few data on DnaK from Rhodococcus sp. were available in the literature. In a previous study, we reported that toluene and phenol stress gave rise to a 29.87-fold and 3.93-fold increase for the expression of DnaK from R. ruber SD3, respectively. Thus, we deduced DnaK was in correlation with the organic solvent tolerance of R. ruber SD3. OBJECTIVE To elucidate the role of DnaK in the organic solvent tolerance of R. ruber SD3, expression, purification and functional analysis of Dnak from R. ruber SD3 were performed in the present paper. METHODS In this article, DnaK from R. ruber SD3 was heterologously expressed in E. coli BL21(DE3) and purified by affinity chromatography. Functional analysis of DnaK was performed using determination of kinetics, docking, assay of chaperone activity and microbial growth. RESULTS The recombinant DnaK was rapidly purified by affinity chromatography with the purification fold of 1.9 and the recovery rate of 57.9%. Km, Vmax and Kcat for Dnak from R. ruber SD3 were 80.8 μM, 58.1 nmol/min and 374.3 S-1, respectively. The recombinant protein formed trimer in vitro, with the calculated molecular weight of 214 kDa. According to In-silico analysis, DnaK interacted with other molecular chaperones and some important proteins in the metabolism. The specific activity of catalase in the presence of recombinant DnaK was 1.85 times or 2.00 times that in the presence of BSA or Tris-HCl buffer after exposure to 54 °C for 1h. E. coli transformant with pET28-dnak showed higher growth than E. coli transformant with pET28 at 43°C and in the presence of phenol, respectively. CONCLUSION The biochemical properties and the interaction analysis of DnaK from R. ruber SD3 deepened our understanding of DnaK function. DnaK played an important role in microbial growth when R. ruber was subjected to various stress such as heating and organic solvent.
Collapse
Affiliation(s)
- Xin Fan
- College of Life Science, Jiangxi Normal University, Nanchang-330022. China
| | - Yuan Yuan
- College of Life Science, Jiangxi Normal University, Nanchang-330022. China
| | - Fan Zhang
- College of Life Science, Jiangxi Normal University, Nanchang-330022. China
| | - Lei Ai
- College of Life Science, Jiangxi Normal University, Nanchang-330022. China
| | - Zhonghao Wu
- College of Life Science, Jiangxi Normal University, Nanchang-330022. China
| | - Ren Peng
- College of Life Science, Jiangxi Normal University, Nanchang-330022. China
| |
Collapse
|
3
|
Aramin S, Fassler R, Chikne V, Goldenberg M, Arian T, Kolet Eliaz L, Rimon O, Ram O, Michaeli S, Reichmann D. TrypOx, a Novel Eukaryotic Homolog of the Redox-Regulated Chaperone Hsp33 in Trypanosoma brucei. Front Microbiol 2020; 11:1844. [PMID: 32849441 PMCID: PMC7423844 DOI: 10.3389/fmicb.2020.01844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 01/28/2023] Open
Abstract
ATP-independent chaperones are widespread across all domains of life and serve as the first line of defense during protein unfolding stresses. One of the known crucial chaperones for bacterial survival in a hostile environment (e.g., heat and oxidative stress) is the highly conserved, redox-regulated ATP-independent bacterial chaperone Hsp33. Using a bioinformatic analysis, we describe novel eukaryotic homologs of Hsp33 identified in eukaryotic pathogens belonging to the kinetoplastids, a family responsible for lethal human diseases such as Chagas disease as caused by Trypanosoma cruzi, African sleeping sickness caused by Trypanosoma brucei spp., and leishmaniasis pathologies delivered by various Leishmania species. During their pathogenic life cycle, kinetoplastids need to cope with elevated temperatures and oxidative stress, the same conditions which convert Hsp33 into a powerful chaperone in bacteria, thus preventing aggregation of a wide range of misfolded proteins. Here, we focused on a functional characterization of the Hsp33 homolog in one of the members of the kinetoplastid family, T. brucei, (Tb927.6.2630), which we have named TrypOx. RNAi silencing of TrypOx led to a significant decrease in the survival of T. brucei under mild oxidative stress conditions, implying a protective role of TrypOx during the Trypanosomes growth. We then adopted a proteomics-driven approach to investigate the role of TrypOx in defining the oxidative stress response. Depletion of TrypOx significantly altered the abundance of proteins mediating redox homeostasis, linking TrypOx with the antioxidant system. Using biochemical approaches, we identified the redox-switch domain of TrypOx, showing its modularity and oxidation-dependent structural plasticity. Kinetoplastid parasites such as T. brucei need to cope with high levels of oxidants produced by the innate immune system, such that parasite-specific antioxidant proteins like TrypOx - which are depleted in mammals - are highly promising candidates for drug targeting.
Collapse
Affiliation(s)
- Samar Aramin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rosi Fassler
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Mor Goldenberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tal Arian
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liat Kolet Eliaz
- The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Oded Rimon
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oren Ram
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences, Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan, Israel
| | - Dana Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Xu H, Xing J, Tang X, Sheng X, Zhan W. Immune response and protective effect against Vibrio anguillarum induced by DNA vaccine encoding Hsp33 protein. Microb Pathog 2019; 137:103729. [DOI: 10.1016/j.micpath.2019.103729] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
|
5
|
Vinayavekhin N, Kongchai W, Piapukiew J, Chavasiri W. Aspergillus niger upregulated glycerolipid metabolism and ethanol utilization pathway under ethanol stress. Microbiologyopen 2019; 9:e00948. [PMID: 31646764 PMCID: PMC6957411 DOI: 10.1002/mbo3.948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 11/26/2022] Open
Abstract
The knowledge of how Aspergillus niger responds to ethanol can lead to the design of strains with enhanced ethanol tolerance to be utilized in numerous industrial bioprocesses. However, the current understanding about the response mechanisms of A. niger toward ethanol stress remains quite limited. Here, we first applied a cell growth assay to test the ethanol tolerance of A. niger strain ES4, which was isolated from the wall near a chimney of an ethanol tank of a petroleum company, and found that it was capable of growing in 5% (v/v) ethanol to 30% of the ethanol‐free control level. Subsequently, the metabolic responses of this strain toward ethanol were investigated using untargeted metabolomics, which revealed the elevated levels of triacylglycerol (TAG) in the extracellular components, and of diacylglycerol, TAG, and hydroxy‐TAG in the intracellular components. Lastly, stable isotope labeling mass spectrometry with ethanol‐d6 showed altered isotopic patterns of molecular ions of lipids in the ethanol‐d6 samples, compared with the nonlabeled ethanol controls, suggesting the ability of A. niger ES4 to utilize ethanol as a carbon source. Together, the studies revealed the upregulation of glycerolipid metabolism and ethanol utilization pathway as novel response mechanisms of A. niger ES4 toward ethanol stress, thereby underlining the utility of untargeted metabolomics and the overall approaches as tools for elucidating new biological insights.
Collapse
Affiliation(s)
- Nawaporn Vinayavekhin
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Biocatalyst and Environmental Biotechnology Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Wimonsiri Kongchai
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Jittra Piapukiew
- Biocatalyst and Environmental Biotechnology Research Unit, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Fernández-Bravo A, López-Fernández L, Figueras MJ. The Metallochaperone Encoding Gene hypA Is Widely Distributed among Pathogenic Aeromonas spp. and Its Expression Is Increased under Acidic pH and within Macrophages. Microorganisms 2019; 7:microorganisms7100415. [PMID: 31581740 PMCID: PMC6843854 DOI: 10.3390/microorganisms7100415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 01/09/2023] Open
Abstract
Metallochaperones are essential proteins that insert metal ions or metal cofactors into specific enzymes, that after maturation will become metalloenzymes. One of the most studied metallochaperones is the nickel-binding protein HypA, involved in the maturation of nickel-dependent hydrogenases and ureases. HypA was previously described in the human pathogens Escherichia coli and Helicobacter pylori and was considered a key virulence factor in the latter. However, nothing is known about this metallochaperone in the species of the emerging pathogen genus Aeromonas. These bacteria are native inhabitants of aquatic environments, often associated with cases of diarrhea and wound infections. In this study, we performed an in silico study of the hypA gene on 36 Aeromonas species genomes, which showed the presence of the gene in 69.4% (25/36) of the Aeromonas genomes. The similarity of Aeromonas HypA proteins with the H. pylori orthologous protein ranged from 21−23%, while with that of E. coli it was 41−45%. However, despite this low percentage, Aeromonas HypA displays the conserved characteristic metal-binding domains found in the other pathogens. The transcriptional analysis enabled the determination of hypA expression levels under acidic and alkaline conditions and after macrophage phagocytosis. The transcriptional regulation of hypA was found to be pH-dependent, showing upregulation at acidic pH. A higher upregulation occurred after macrophage infection. This is the first study that provided evidence that the HypA metallochaperone in Aeromonas might play a role in acid tolerance and in the defense against macrophages.
Collapse
Affiliation(s)
- Ana Fernández-Bravo
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, 43201 Reus, Spain.
| | - Loida López-Fernández
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, 43201 Reus, Spain.
| | - Maria José Figueras
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, 43201 Reus, Spain.
| |
Collapse
|
7
|
Qiu Y, Zhu Y, Zhang Y, Sha Y, Xu Z, Li S, Feng X, Xu H. Characterization of a Regulator pgsR on Endogenous Plasmid p2Sip and Its Complementation for Poly(γ-glutamic acid) Accumulation in Bacillus amyloliquefaciens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3711-3722. [PMID: 30866628 DOI: 10.1021/acs.jafc.9b00332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacillus amyloliquefaciens NX-2S154 is a promising poly(γ-glutamic acid) (γ-PGA) producing strain discovered in previous studies. However, the wild-type strain contains an unknown endogenous plasmid, p2Sip, which causes low transformation efficiency and instability of exogenous plasmids. In our study, p2Sip is 5622 bp with 41% G+C content and contains four putative open reading frames (ORFs), including genes repB, hsp, and mobB and γ-PGA-synthesis regulator, pgsR. Elimination of p2Sip from strain NX-2S154 delayed γ-PGA secretion and decreased production of γ-PGA by 18.1%. Integration of a pgsR expression element into the genomic BamHI locus using marker-free manipulation based on pheS* increased the γ-PGA titer by 8%. pgsR overexpression upregulated the expression of γ-PGA synthase pgsB, regulator degQ, and glutamic acid synthase gltA, thus increasing the γ-PGA production in B. amyloliquefaciens NB. Our results indicated that pgsR from p2Sip plays an important regulatory role in γ-PGA synthesis in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Yatao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Yuanyuan Sha
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing 211816 , China
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
8
|
Vinayavekhin N, Vangnai AS. The effects of disruption in membrane lipid biosynthetic genes on 1-butanol tolerance of Bacillus subtilis. Appl Microbiol Biotechnol 2018; 102:9279-9289. [DOI: 10.1007/s00253-018-9298-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/23/2018] [Accepted: 08/02/2018] [Indexed: 01/24/2023]
|
9
|
2′-Deoxyribosyltransferase from Bacillus psychrosaccharolyticus: A Mesophilic-Like Biocatalyst for the Synthesis of Modified Nucleosides from a Psychrotolerant Bacterium. Catalysts 2018. [DOI: 10.3390/catal8010008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
10
|
Fiedurek J, Trytek M, Szczodrak J. Strain improvement of industrially important microorganisms based on resistance to toxic metabolites and abiotic stress. J Basic Microbiol 2017; 57:445-459. [DOI: 10.1002/jobm.201600710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/04/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Jan Fiedurek
- Department of Industrial Microbiology; Institute of Microbiology and Biotechnology; Maria Curie-Skłodowska University; Lublin Poland
| | - Mariusz Trytek
- Department of Industrial Microbiology; Institute of Microbiology and Biotechnology; Maria Curie-Skłodowska University; Lublin Poland
| | - Janusz Szczodrak
- Department of Industrial Microbiology; Institute of Microbiology and Biotechnology; Maria Curie-Skłodowska University; Lublin Poland
| |
Collapse
|
11
|
Lee YS, Lee J, Ryu KS, Lee Y, Jung TG, Jang JH, Sim DW, Kim EH, Seo MD, Lee KW, Won HS. Semi-Empirical Structure Determination of Escherichia coli Hsp33 and Identification of Dynamic Regulatory Elements for the Activation Process. J Mol Biol 2015; 427:3850-61. [DOI: 10.1016/j.jmb.2015.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 11/27/2022]
|
12
|
Sandoval-Espinola WJ, Chinn M, Bruno-Barcena JM. Inoculum optimization ofClostridium beijerinckiifor reproducible growth. FEMS Microbiol Lett 2015; 362:fnv164. [DOI: 10.1093/femsle/fnv164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
|
13
|
Dahl JU, Gray MJ, Jakob U. Protein quality control under oxidative stress conditions. J Mol Biol 2015; 427:1549-63. [PMID: 25698115 PMCID: PMC4357566 DOI: 10.1016/j.jmb.2015.02.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 12/22/2022]
Abstract
Accumulation of reactive oxygen and chlorine species (RO/CS) is generally regarded to be a toxic and highly undesirable event, which serves as contributing factor in aging and many age-related diseases. However, it is also put to excellent use during host defense, when high levels of RO/CS are produced to kill invading microorganisms and regulate bacterial colonization. Biochemical and cell biological studies of how bacteria and other microorganisms deal with RO/CS have now provided important new insights into the physiological consequences of oxidative stress, the major targets that need protection, and the cellular strategies employed by organisms to mitigate the damage. This review examines the redox-regulated mechanisms by which cells maintain a functional proteome during oxidative stress. We will discuss the well-characterized redox-regulated chaperone Hsp33, and we will review recent discoveries demonstrating that oxidative stress-specific activation of chaperone function is a much more widespread phenomenon than previously anticipated. New members of this group include the cytosolic ATPase Get3 in yeast, the Escherichia coli protein RidA, and the mammalian protein α2-macroglobulin. We will conclude our review with recent evidence showing that inorganic polyphosphate (polyP), whose accumulation significantly increases bacterial oxidative stress resistance, works by a protein-like chaperone mechanism. Understanding the relationship between oxidative and proteotoxic stresses will improve our understanding of both host-microbe interactions and how mammalian cells combat the damaging side effects of uncontrolled RO/CS production, a hallmark of inflammation.
Collapse
Affiliation(s)
- Jan-Ulrik Dahl
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Michael J Gray
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
14
|
Dong H, Zhao C, Zhang T, Lin Z, Li Y, Zhang Y. Engineering Escherichia coli Cell Factories for n-Butanol Production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:141-63. [PMID: 25662903 DOI: 10.1007/10_2015_306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The production of n-butanol, as a widely applied solvent and potential fuel, is attracting much attention. The fermentative production of butanol coupled with the production of acetone and ethanol by Clostridium (ABE fermentation) was once one of the oldest biotechnological processes, ranking second in scale behind ethanol fermentation. However, there remain problems with butanol production by Clostridium, especially the difficulty in genetically manipulating clostridial strains. In recent years, many efforts have been made to produce butanol using non-native strains. Until now, the most advanced effort was the engineering of the user-friendly and widely studied Escherichia coli for butanol production. This paper reviews the current progress and problems relating to butanol production by engineered E. coli in terms of prediction using mathematical models, pathway construction, novel enzyme replacement, butanol toxicity, and tolerance engineering strategies.
Collapse
Affiliation(s)
- Hongjun Dong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianrui Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Zhao Lin
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
15
|
Bormann S, Baer ZC, Sreekumar S, Kuchenreuther JM, Dean Toste F, Blanch HW, Clark DS. Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors. Metab Eng 2014; 25:124-30. [DOI: 10.1016/j.ymben.2014.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/16/2014] [Accepted: 07/10/2014] [Indexed: 01/08/2023]
|
16
|
Zingaro KA, Nicolaou SA, Yuan Y, Papoutsakis ET. Exploring the heterologous genomic space for building, stepwise, complex, multicomponent tolerance to toxic chemicals. ACS Synth Biol 2014; 3:476-86. [PMID: 24933690 DOI: 10.1021/sb400156v] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Modern bioprocessing depends on superior cellular traits, many stemming from unknown genes and gene interactions. Tolerance to toxic chemicals is such an industrially important complex trait, which frequently limits the economic feasibility of producing commodity chemicals and biofuels. Chemical tolerance encompasses both improved cell viability and growth under chemical stress. Building upon the success of our recently reported semisynthetic stress response system expressed off plasmid pHSP (Heat Shock Protein), we probed the genomic space of the solvent tolerant Lactobacillus plantarum to identify genetic determinants that impart solvent tolerance in combination with pHSP. Using two targeted enrichments, one for superior viability and one for better growth under ethanol stress, we identified several beneficial heterologous DNA determinants that act synergistically with pHSP. In separate strains, a 209% improvement in survival and an 83% improvement in growth over previously engineered strains based on pHSP were thus generated. We then developed a composite phenotype of improved growth and survival by combining the identified L. plantarum genetic fragments. This demonstrates the concept for a sequential, iterative assembly strategy for building multigenic traits by exploring the synergistic effects of genetic determinants from a much broader genomic space. The best performing strain produced a 3.7-fold improved survival under 8% ethanol stress, as well as a 32% increase in growth under 4% ethanol. This strain also shows significantly improved tolerance to n-butanol. Improved solvent production is rarely examined in tolerance engineering studies. Here, we show that our system significantly improves ethanol productivity in a Melle-Boinot-like fermentation process.
Collapse
Affiliation(s)
- Kyle A. Zingaro
- Molecular Biotechnology Laboratory, Dept. of Chemical & Biomolecular Engineering, the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, United States
| | - Sergios A. Nicolaou
- Molecular Biotechnology Laboratory, Dept. of Chemical & Biomolecular Engineering, the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, United States
| | - Yongbo Yuan
- Molecular Biotechnology Laboratory, Dept. of Chemical & Biomolecular Engineering, the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, United States
| | - Eleftherios Terry Papoutsakis
- Molecular Biotechnology Laboratory, Dept. of Chemical & Biomolecular Engineering, the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, United States
| |
Collapse
|
17
|
Abstract
Strain tolerance to toxic metabolites is an important trait for many biotechnological applications, such as the production of solvents as biofuels or commodity chemicals. Engineering a complex cellular phenotype, such as solvent tolerance, requires the coordinated and tuned expression of several genes. Using combinations of heat shock proteins (HSPs), we engineered a semisynthetic stress response system in Escherichia coli capable of tolerating high levels of toxic solvents. Simultaneous overexpression of the HSPs GrpE and GroESL resulted in a 2-fold increase in viable cells (CFU) after exposure to 5% (vol/vol) ethanol for 24 h. Co-overexpression of GroESL and ClpB on coexisting plasmids resulted in 1,130%, 78%, and 25% increases in CFU after 24 h in 5% ethanol, 1% n-butanol, and 1% i-butanol, respectively. Co-overexpression of GrpE, GroESL, and ClpB on a single plasmid produced 200%, 390%, and 78% increases in CFU after 24 h in 7% ethanol, 1% n-butanol, or 25% 1,2,4-butanetriol, respectively. Overexpression of other autologous HSPs (DnaK, DnaJ, IbpA, and IbpB) alone or in combinations failed to improve tolerance. Expression levels of HSP genes, tuned through inducible promoters and the plasmid copy number, affected the effectiveness of the engineered stress response system. Taken together, these data demonstrate that tuned co-overexpression of GroES, GroEL, ClpB, and GrpE can be engaged to engineer a semisynthetic stress response system capable of greatly increasing the tolerance of E. coli to solvents and provides a starting platform for engineering customized tolerance to a wide variety of toxic chemicals. Microbial production of useful chemicals is often limited by the toxicity of desired products, feedstock impurities, and undesired side products. Improving tolerance is an essential step in the development of practical platform organisms for production of a wide range of chemicals. By overexpressing autologous heat shock proteins in Escherichia coli, we have developed a modular semisynthetic stress response system capable of improving tolerance to ethanol, n-butanol, and potentially other toxic solvents. Using this system, we demonstrate that a practical stress response system requires both tuning of individual gene components and a reliable framework for gene expression. This system can be used to seek out new interacting partners to improve the tolerance phenotype and can be used in the development of more robust solvent production strains.
Collapse
|
18
|
Doukyu N, Ishikawa K, Watanabe R, Ogino H. Improvement in organic solvent tolerance by double disruptions of proV and marR genes in Escherichia coli. J Appl Microbiol 2012; 112:464-74. [PMID: 22257006 DOI: 10.1111/j.1365-2672.2012.05236.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To investigate the involvement of osmoprotectant transporters in organic solvent tolerance in Escherichia coli and to construct an E. coli strain with high organic solvent tolerance. METHODS AND RESULTS The organic solvent tolerance of ΔbetT, ΔproV, ΔproP or ΔputP single-gene knockout mutants of E. coli K-12 strain was examined. Among these mutants, the organic solvent tolerance of the ΔproV mutant remarkably increased compared with that of the parent strain. It has been known that a marR mutation confers tolerance on E. coli to organic solvents. A ΔproV and ΔmarR double-gene mutant was more tolerant to organic solvents than the ΔproV or ΔmarR single-gene mutant. The n-hexane amount accumulated in E. coli cells was examined after incubation in an n-hexane-aqueous medium two-phase system. The intracellular n-hexane level in the ΔproV and ΔmarR double-gene mutant was kept lower than those of the parent strain, ΔproV mutant and ΔmarR mutant. CONCLUSIONS The organic solvent tolerance level in E. coli highly increased by dual disruption of proV and marR. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests a new strategy for increasing the organic solvent tolerance level in E. coli to improve the usability of the whole-cell biocatalysts in two-phase systems employing organic solvents.
Collapse
Affiliation(s)
- N Doukyu
- Bio-Nano Electronic Research Center, Toyo University, Kawagoe, Saitama, Japan.
| | | | | | | |
Collapse
|
19
|
Torres S, Pandey A, Castro GR. Organic solvent adaptation of Gram positive bacteria: Applications and biotechnological potentials. Biotechnol Adv 2011; 29:442-52. [DOI: 10.1016/j.biotechadv.2011.04.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
|
20
|
Cremers CM, Reichmann D, Hausmann J, Ilbert M, Jakob U. Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone. J Biol Chem 2010; 285:11243-51. [PMID: 20139072 DOI: 10.1074/jbc.m109.084350] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp33, a molecular chaperone specifically activated by oxidative stress conditions that lead to protein unfolding, protects cells against oxidative protein aggregation. Stress sensing in Hsp33 occurs via its C-terminal redox switch domain, which consists of a zinc center that responds to the presence of oxidants and an adjacent metastable linker region, which responds to unfolding conditions. Here we show that single mutations in the N terminus of Hsp33 are sufficient to either partially (Hsp33-M172S) or completely (Hsp33-Y12E) abolish this post-translational regulation of Hsp33 chaperone function. Both mutations appear to work predominantly via the destabilization of the Hsp33 linker region without affecting zinc coordination, redox sensitivity, or substrate binding of Hsp33. We found that the M172S substitution causes moderate destabilization of the Hsp33 linker region, which seems sufficient to convert the redox-regulated Hsp33 into a temperature-controlled chaperone. The Y12E mutation leads to the constitutive unfolding of the Hsp33 linker region thereby turning Hsp33 into a constitutively active chaperone. These results demonstrate that the redox-controlled unfolding of the Hsp33 linker region plays the central role in the activation process of Hsp33. The zinc center of Hsp33 appears to act as the redox-sensitive toggle that adjusts the thermostability of the linker region to the cell redox status. In vivo studies confirmed that even mild overexpression of the Hsp33-Y12E mutant protein inhibits bacterial growth, providing important evidence that the tight functional regulation of Hsp33 chaperone activity plays a vital role in bacterial survival.
Collapse
Affiliation(s)
- Claudia M Cremers
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Redox regulation of stress proteins, such as molecular chaperones, guarantees an immediate response to oxidative stress conditions. This review focuses on the two major classes of redox-regulated chaperones, Hsp33 in bacteria and typical 2-Cys peroxiredoxins in eukaryotes. Both proteins employ redox-sensitive cysteines, whose oxidation status directly controls their affinity for unfolding proteins and therefore their chaperone function. We will first discuss Hsp33, whose oxidative stress-induced disulfide bond formation triggers the partial unfolding of the chaperone, which, in turn, leads to the exposure of a high-affinity binding site for unfolded proteins. This rapid mode of activation makes Hsp33 essential for protecting bacteria against severe oxidative stress conditions, such as hypochlorite (i.e., bleach) treatment, which leads to widespread protein unfolding and aggregation. We will compare Hsp33 to the highly abundant eukaryotic typical 2-Cys peroxiredoxin, whose oxidative stress-induced sulfinic acid formation turns the peroxidase into a molecular chaperone in vitro and presumably in vivo. These examples illustrate how proteins use reversible cysteine modifications to rapidly adjust to oxidative stress conditions and demonstrate that redox regulation plays a vital role in protecting organisms against reactive oxygen species-mediated cell death.
Collapse
Affiliation(s)
- Caroline Kumsta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
22
|
Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KLJ. Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 2009; 11:262-73. [DOI: 10.1016/j.ymben.2009.05.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
|
23
|
Taylor M, Tuffin M, Burton S, Eley K, Cowan D. Microbial responses to solvent and alcohol stress. Biotechnol J 2008; 3:1388-97. [PMID: 18956369 DOI: 10.1002/biot.200800158] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mark Taylor
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Cape Town, South Africa
| | | | | | | | | |
Collapse
|
24
|
Okochi M, Kanie K, Kurimoto M, Yohda M, Honda H. Overexpression of prefoldin from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 endowed Escherichia coli with organic solvent tolerance. Appl Microbiol Biotechnol 2008; 79:443-9. [PMID: 18443786 DOI: 10.1007/s00253-008-1450-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 03/06/2008] [Accepted: 03/08/2008] [Indexed: 11/26/2022]
Abstract
Prefoldin is a jellyfish-shaped hexameric chaperone that captures a protein-folding intermediate and transfers it to the group II chaperonin for correct folding. In this work, we characterized the organic solvent tolerance of Escherichia coli cells that overexpress prefoldin and group II chaperonin from a hyperthermophilic archeaum, Pyrococcus horikoshii OT3. The colony-forming efficiency of E. coli cells overexpressing prefoldin increased by 1,000-fold and decreased the accumulation of intracellular organic solvent. The effect was impaired by deletions of the region responsible for the chaperone function of prefoldin. Therefore, we concluded that prefoldin endows E. coli cells by preventing accumulation of intracellular organic solvent through its molecular chaperone activity.
Collapse
Affiliation(s)
- Mina Okochi
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
| | | | | | | | | |
Collapse
|