1
|
Nie W, Wang S, He R, Xu Q, Wang P, Wu Y, Tian F, Yuan J, Zhu B, Chen G. A-to-I RNA editing in bacteria increases pathogenicity and tolerance to oxidative stress. PLoS Pathog 2020; 16:e1008740. [PMID: 32822429 PMCID: PMC7467310 DOI: 10.1371/journal.ppat.1008740] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/02/2020] [Accepted: 06/24/2020] [Indexed: 01/25/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes; however, many features remain largely unexplored in prokaryotes. This study focuses on a serine-to-proline recoding event (S128P) that originated in the mRNA of fliC, which encodes a flagellar filament protein; the editing event was observed in RNA-seq samples exposed to oxidative stress. Using Sanger sequencing, we show that the S128P editing event is induced by H2O2. To investigate the in vivo interaction between RNAs and TadA, which is the principal enzyme for A-to-I editing, genome-wide RNA immunoprecipitation–coupled high-throughput sequencing (iRIP-Seq) analysis was performed using HA-tagged TadA from Xanthomonas oryzae pv. oryzicola. We found that TadA can bind to the mRNA of fliC and the binding motif is identical to that previously reported by Bar-Yaacov and colleagues. This editing event increased motility and enhanced tolerance to oxidative stress due to changes in flagellar filament structure, which was modelled in 3D and measured by TEM. The change in filament structure due to the S128P mutant increased biofilm formation, which was measured by the 3D laser scanning confocal microscopy. RNA-seq revealed that a gene cluster that contributes to siderophore biosynthesis and Fe3+ uptake was upregulated in S128P compared with WT. Based on intracellular levels of reactive oxygen species and an oxidative stress survival assay, we found that this gene cluster can contribute to the reduction of the Fenton reaction and increases biofilm formation and bacterial virulence. This oxidative stress response was also confirmed in Pseudomonas putida. Overall, our work demonstrates that A-to-I RNA editing plays a role in bacterial pathogenicity and adaptation to oxidative stress. Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes that has only been recently documented in bacteria. In this study, we use multiple ‘omic’ approaches to show that A-to-I RNA editing can occur in fliC, a flagellar filament protein. We show that TadA, which encodes adenosine deaminase, can directly bind to mRNA of target genes through recognition of a GACG motif. This editing event changes a single amino acid residue from serine to proline in FliC, resulting in a structural change in the flagellar filament. This posttranscriptional editing event contributes to virulence and increases tolerance to oxidative stress by enhancing biofilm formation. Our results provide insight into a new mechanism that bacterial pathogens use to adapt to oxidative stress, which can also increase virulence.
Collapse
Affiliation(s)
- Wenhan Nie
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, and SJTU-Yale Joint Center for Biostatistics and Data Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peihong Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Bo Zhu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| | - Gongyou Chen
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| |
Collapse
|
2
|
Hu Y, Lu Y, Wang S, Zhang M, Qu X, Niu B. Application of Machine Learning Approaches for the Design and Study of Anticancer Drugs. Curr Drug Targets 2020; 20:488-500. [PMID: 30091413 DOI: 10.2174/1389450119666180809122244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world's highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. OBJECTIVE In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. RESULTS Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. CONCLUSION This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.
Collapse
Affiliation(s)
- Yan Hu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yi Lu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shuo Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Mengying Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaosheng Qu
- National Engineering Laboratory of Southwest Endangered Medicinal Resources Development, Guangxi Botanical Garden of Medicinal Plants, 530023,Nanning, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Khanyile S, Masamba P, Oyinloye BE, Mbatha LS, Kappo AP. Current Biochemical Applications and Future Prospects of Chlorotoxin in Cancer Diagnostics and Therapeutics. Adv Pharm Bull 2019; 9:510-520. [PMID: 31857956 PMCID: PMC6912174 DOI: 10.15171/apb.2019.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/14/2019] [Accepted: 07/21/2019] [Indexed: 12/22/2022] Open
Abstract
Chlorotoxin (CTX) is a minute 4 kDa protein made up of 36 amino acid residues, commonly known for its binding affinity to chloride channels and matrix metalloproteinase-2 (MMP-2) of glioma tumors of the spine and brain. This property and the possibility of conjugating this peptide to nanoparticles have enabled its diverse use in various biotechnological and biomedical applications for cancer treatment, such as in tumor imaging and radiotherapy. Because of the fascinating biological properties CTX possesses, elucidating its mechanism of action may hold promise for the development of new and effective therapeutic drugs, as well as more sensitive and highly specific cancer-screening kits. This article therefore reviews the currently known applications of CTX and suggests diverse ways in which it can be applied for the design of improved drugs and diagnostic tools for cancer.
Collapse
Affiliation(s)
- Sbonelo Khanyile
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Priscilla Masamba
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa.,Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - Londiwe Simphiwe Mbatha
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
4
|
Han Q, Yang C, Lu J, Zhang Y, Li J. Metabolism of Oxalate in Humans: A Potential Role Kynurenine Aminotransferase/Glutamine Transaminase/Cysteine Conjugate Beta-lyase Plays in Hyperoxaluria. Curr Med Chem 2019; 26:4944-4963. [PMID: 30907303 DOI: 10.2174/0929867326666190325095223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/17/2019] [Accepted: 02/22/2019] [Indexed: 11/22/2022]
Abstract
Hyperoxaluria, excessive urinary oxalate excretion, is a significant health problem worldwide. Disrupted oxalate metabolism has been implicated in hyperoxaluria and accordingly, an enzymatic disturbance in oxalate biosynthesis can result in the primary hyperoxaluria. Alanine glyoxylate aminotransferase-1 and glyoxylate reductase, the enzymes involving glyoxylate (precursor for oxalate) metabolism, have been related to primary hyperoxalurias. Some studies suggest that other enzymes such as glycolate oxidase and alanine glyoxylate aminotransferase-2 might be associated with primary hyperoxaluria as well, but evidence of a definitive link is not strong between the clinical cases and gene mutations. There are still some idiopathic hyperoxalurias, which require a further study for the etiologies. Some aminotransferases, particularly kynurenine aminotransferases, can convert glyoxylate to glycine. Based on biochemical and structural characteristics, expression level, subcellular localization of some aminotransferases, a number of them appear able to catalyze the transamination of glyoxylate to glycine more efficiently than alanine glyoxylate aminotransferase-1. The aim of this minireview is to explore other undermining causes of primary hyperoxaluria and stimulate research toward achieving a comprehensive understanding of underlying mechanisms leading to the disease. Herein, we reviewed all aminotransferases in the liver for their functions in glyoxylate metabolism. Particularly, kynurenine aminotransferase-I and III were carefully discussed regarding their biochemical and structural characteristics, cellular localization, and enzyme inhibition. Kynurenine aminotransferase-III is, so far, the most efficient putative mitochondrial enzyme to transaminate glyoxylate to glycine in mammalian livers, might be an interesting enzyme to look over in hyperoxaluria etiology of primary hyperoxaluria and should be carefully investigated for its involvement in oxalate metabolism.
Collapse
Affiliation(s)
- Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228. China
| | - Cihan Yang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan 570228. China
| | - Jun Lu
- Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208. China
| | - Yinai Zhang
- Central South University Xiangya School of Medicine Affiliated Haikou People's Hospital, Haikou, Hainan 570208. China
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061. United States
| |
Collapse
|
5
|
Chen W, Liang X, Nong Z, Li Y, Pan X, Chen C, Huang L. The Multiple Applications and Possible Mechanisms of the Hyperbaric Oxygenation Therapy. Med Chem 2018; 15:459-471. [PMID: 30569869 DOI: 10.2174/1573406415666181219101328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Hyperbaric Oxygenation Therapy (HBOT) is used as an adjunctive method for multiple diseases. The method meets the routine treating and is non-invasive, as well as provides 100% pure oxygen (O2), which is at above-normal atmospheric pressure in a specialized chamber. It is well known that in the condition of O2 deficiency, it will induce a series of adverse events. In order to prevent the injury induced by anoxia, the capability of offering pressurized O2 by HBOT seems involuntary and significant. In recent years, HBOT displays particular therapeutic efficacy in some degree, and it is thought to be beneficial to the conditions of angiogenesis, tissue ischemia and hypoxia, nerve system disease, diabetic complications, malignancies, Carbon monoxide (CO) poisoning and chronic radiation-induced injury. Single and combination HBOT are both applied in previous studies, and the manuscript is to review the current applications and possible mechanisms of HBOT. The applicability and validity of HBOT for clinical treatment remain controversial, even though it is regarded as an adjunct to conventional medical treatment with many other clinical benefits. There also exists a negative side effect of accepting pressurized O2, such as oxidative stress injury, DNA damage, cellular metabolic, activating of coagulation, endothelial dysfunction, acute neurotoxicity and pulmonary toxicity. Then it is imperative to comprehensively consider the advantages and disadvantages of HBOT in order to obtain a satisfying therapeutic outcome.
Collapse
Affiliation(s)
- Wan Chen
- Department of Emergency, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Xingmei Liang
- Department of Pharmacy, Guangxi Medical College, Nanning, Guangxi 530021, China
| | - Zhihuan Nong
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning 530022, China
| | - Yaoxuan Li
- Department of Neurology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530022, China
| | - Xiaorong Pan
- Department of Hyperbaric oxygen, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Chunxia Chen
- Department of Hyperbaric oxygen, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Luying Huang
- Department of Respiratory Medicine, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| |
Collapse
|
6
|
Rodríguez DC, Ocampo M, Reyes C, Arévalo‐Pinzón G, Munoz M, Patarroyo MA, Patarroyo ME. Cell‐Peptide Specific Interaction Can Inhibit
Mycobacterium tuberculosis H37Rv
Infection. J Cell Biochem 2015; 117:946-58. [DOI: 10.1002/jcb.25379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/14/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Deisy Carolina Rodríguez
- Fundacion Instituto de Inmunología de Colombia (FIDIC)BogotáColombia
- Universidad del RosarioBogotáColombia
| | - Marisol Ocampo
- Fundacion Instituto de Inmunología de Colombia (FIDIC)BogotáColombia
- Universidad del RosarioBogotáColombia
| | - Cesar Reyes
- Fundacion Instituto de Inmunología de Colombia (FIDIC)BogotáColombia
- Universidad del RosarioBogotáColombia
| | - Gabriela Arévalo‐Pinzón
- Fundacion Instituto de Inmunología de Colombia (FIDIC)BogotáColombia
- Universidad del RosarioBogotáColombia
| | - Marina Munoz
- Fundacion Instituto de Inmunología de Colombia (FIDIC)BogotáColombia
- Universidad del RosarioBogotáColombia
| | - Manuel Alfonso Patarroyo
- Fundacion Instituto de Inmunología de Colombia (FIDIC)BogotáColombia
- Universidad del RosarioBogotáColombia
| | - Manuel Elkin Patarroyo
- Fundacion Instituto de Inmunología de Colombia (FIDIC)BogotáColombia
- Universidad Nacional de ColombiaBogotáColombia
| |
Collapse
|
7
|
Chimal-Vega B, Paniagua-Castro N, Carrillo Vazquez J, Rosas-Trigueros JL, Zamorano-Carrillo A, Benítez-Cardoza CG. Exploring the structure and conformational landscape of human leptin. A molecular dynamics approach. J Theor Biol 2015; 385:90-101. [PMID: 26342543 DOI: 10.1016/j.jtbi.2015.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/21/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022]
Abstract
Leptin is a hormone that regulates energy homeostasis, inflammation, hematopoiesis and immune response, among other functions (Houseknecht et al., 1998; Zhang et al., 1995; Paz-Filho et al., 2010). To obtain its crystallographic structure, it was necessary to substitute a tryptophan for a glutamic acid at position 100, thus creating a mutant leptin that has been reported to have biological activity comparable to the activity of the wild type but that crystallizes more readily. Here, we report a comparative study of the conformational space of WT and W100E leptin using molecular dynamics simulations performed at 300, 400, and 500 K. We detected differences between the interactions of the two proteins with local and distal effects, resulting in changes in the conformation, accessible surface area, compactness, electrostatic potential and dynamic behavior. Additionally, the series of unfolding events that occur when leptin is subjected to high temperature differs for the two constructs. We observed that both proteins are mostly unstructured after 20 ns of MD simulation at 500 K. However, WT leptin maintains a significant amount of secondary structure in helix α2, while the most stable region of W100E leptin is helix α3. Furthermore, we found that the region between residues 25 and 42 might adopt interconverting secondary structures ranging from α-helices and random coils to β-strand structures. Thus, this region can be considered an intrinsically disordered region. This atomistic description supports our understanding of leptin signaling and consequently might facilitate the use of leptin in treatments for the pathophysiologies in which it is implicated.
Collapse
Affiliation(s)
- Brenda Chimal-Vega
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| | - Norma Paniagua-Castro
- Departamento de Fisiología, Doctorado en Ciencias en Biotecnología, ENCB, Instituto Politécnico Nacional. Avenida Wilfrido Massieu s/n, Esq. Manuel L. Stampa, Col. Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, 07738 México, D.F., México
| | - Jonathan Carrillo Vazquez
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| | - Jorge L Rosas-Trigueros
- Laboratorio Transdisciplinario de Investigación en Sistemas Evolutivos, SEPI de la ESCOM del Instituto Politécnico Nacional, Juan de Dios Bátiz y Miguel Othón de Mendizábal s/n, México, D.F. 07738, México
| | - Absalom Zamorano-Carrillo
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México
| | - Claudia G Benítez-Cardoza
- Laboratorio de Investigación Bioquímica y Biofísica Computacional, Doctorado en Ciencias en Biotecnología, ENMH, Instituto Politécnico Nacional, Guillermo Massieu Helguera, México, D.F. 07320, México.
| |
Collapse
|
8
|
Singh SP, Gupta DK. A comparative study of structural and conformational properties of casein kinase-1 isoforms: insights from molecular dynamics and principal component analysis. J Theor Biol 2015; 371:59-68. [PMID: 25665722 DOI: 10.1016/j.jtbi.2015.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/02/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
Wnt signaling pathway regulates several developmental processes in human; however recently this pathway has been associated with development of different types of cancers. Casein kinase-1 (CK1) constitutes a family of serine-threonine protein kinase; various members of this family participate in Wnt signal transduction pathway and serve as molecular switch to this pathway. Among the known six isoforms of CK1, in human, at least three isoforms (viz. alpha, delta and epsilon) have been reported as oncogenic. The development of common therapeutics against these kinases is an arduous task; unless we have the detailed information of their tertiary structures and conformational properties. In the present work, the dynamical and conformational properties for each of three isoforms of CK1 are explored through molecular dynamics (MD) simulations. The conformational space distribution of backbone atoms is evaluated using principal component analysis of MD data, which are further validated on the basis of potential energy surface. Based on these analytics, it is suggested that conformational subspace shifts upon binding to ligands and guides the kinase action of CK1 isoforms. Further, this paper as a first effort to concurrently study all the three isoforms of CK1 provides structural basis for development of common anticancer therapeutics against three isoforms of CK1.
Collapse
Affiliation(s)
- Surya Pratap Singh
- Center of Bioinformatics, University of Allahabad, Allahabad 211002, India.
| | - Dwijendra K Gupta
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
9
|
Genetic improvement of native xylose-fermenting yeasts for ethanol production. J Ind Microbiol Biotechnol 2014; 42:1-20. [DOI: 10.1007/s10295-014-1535-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/02/2014] [Indexed: 12/27/2022]
|
10
|
Thörn C, Udatha DG, Zhou H, Christakopoulos P, Topakas E, Olsson L. Understanding the pH-dependent immobilization efficacy of feruloyl esterase-C on mesoporous silica and its structure–activity changes. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Cong S, Ma XT, Li YX, Wang JF. Structural Basis for the Mutation-Induced Dysfunction of Human CYP2J2: A Computational Study. J Chem Inf Model 2013; 53:1350-7. [DOI: 10.1021/ci400003p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shan Cong
- Key Laboratory of Systems Biomedicine
(Ministry of Education), Shanghai Center for Systems Biomedicine,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Tu Ma
- Key Laboratory of Systems Biomedicine
(Ministry of Education), Shanghai Center for Systems Biomedicine,
Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | |
Collapse
|
12
|
Udatha DBRKG, Mapelli V, Panagiotou G, Olsson L. Common and distant structural characteristics of feruloyl esterase families from Aspergillus oryzae. PLoS One 2012; 7:e39473. [PMID: 22745763 PMCID: PMC3382194 DOI: 10.1371/journal.pone.0039473] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/21/2012] [Indexed: 11/18/2022] Open
Abstract
Background Feruloyl esterases (FAEs) are important biomass degrading accessory enzymes due to their capability of cleaving the ester links between hemicellulose and pectin to aromatic compounds of lignin, thus enhancing the accessibility of plant tissues to cellulolytic and hemicellulolytic enzymes. FAEs have gained increased attention in the area of biocatalytic transformations for the synthesis of value added compounds with medicinal and nutritional applications. Following the increasing attention on these enzymes, a novel descriptor based classification system has been proposed for FAEs resulting into 12 distinct families and pharmacophore models for three FAE sub-families have been developed. Methodology/Principal Findings The feruloylome of Aspergillus oryzae contains 13 predicted FAEs belonging to six sub-families based on our recently developed descriptor-based classification system. The three-dimensional structures of the 13 FAEs were modeled for structural analysis of the feruloylome. The three genes coding for three enzymes, viz., A.O.2, A.O.8 and A.O.10 from the feruloylome of A. oryzae, representing sub-families with unknown functional features, were heterologously expressed in Pichia pastoris, characterized for substrate specificity and structural characterization through CD spectroscopy. Common feature-based pharamacophore models were developed according to substrate specificity characteristics of the three enzymes. The active site residues were identified for the three expressed FAEs by determining the titration curves of amino acid residues as a function of the pH by applying molecular simulations. Conclusions/Significance Our findings on the structure-function relationships and substrate specificity of the FAEs of A. oryzae will be instrumental for further understanding of the FAE families in the novel classification system. The developed pharmacophore models could be applied for virtual screening of compound databases for short listing the putative substrates prior to docking studies or for post-processing docking results to remove false positives. Our study exemplifies how computational predictions can complement to the information obtained through experimental methods.
Collapse
Affiliation(s)
- D. B. R. K. Gupta Udatha
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Valeria Mapelli
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Gianni Panagiotou
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Lisbeth Olsson
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
13
|
Wang JF, Chou KC. Insights into the mutation-induced HHH syndrome from modeling human mitochondrial ornithine transporter-1. PLoS One 2012; 7:e31048. [PMID: 22292090 PMCID: PMC3266937 DOI: 10.1371/journal.pone.0031048] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/30/2011] [Indexed: 11/25/2022] Open
Abstract
Human mitochondrial ornithine transporter-1 is reported in coupling with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome, which is a rare autosomal recessive disorder. For in-depth understanding of the molecular mechanism of the disease, it is crucially important to acquire the 3D structure of human mitochondrial ornithine transporter-1. Since no such structure is available in the current protein structure database, we have developed it via computational approaches based on the recent NMR structure of human mitochondrial uncoupling protein (Berardi MJ, Chou JJ, et al. Nature 2011, 476:109–113). Subsequently, we docked the ligand L-ornithine into the computational structure to search for the favorable binding mode. It was observed that the binding interaction for the most favorable binding mode is featured by six remarkable hydrogen bonds between the receptor and ligand, and that the most favorable binding mode shared the same ligand-binding site with most of the homologous mitochondrial carriers from different organisms, implying that the ligand-binding sites are quite conservative in the mitochondrial carriers family although their sequences similarity is very low with 20% or so. Moreover, according to our structural analysis, the relationship between the disease-causing mutations of human mitochondrial ornithine transporter-1 and the HHH syndrome can be classified into the following three categories: (i) the mutation occurs in the pseudo-repeat regions so as to change the region of the protein closer to the mitochondrial matrix; (ii) the mutation is directly affecting the substrate binding pocket so as to reduce the substrate binding affinity; (iii) the mutation is located in the structural region closer to the intermembrane space that can significantly break the salt bridge networks of the protein. These findings may provide useful insights for in-depth understanding of the molecular mechanism of the HHH syndrome and developing effective drugs against the disease.
Collapse
Affiliation(s)
- Jing-Fang Wang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | | |
Collapse
|
14
|
Wang JF, Hao P, Li YX, Dai JL, Li X. Exploration of conformational transition in the aryl-binding site of human FXa using molecular dynamics simulations. J Mol Model 2011; 18:2717-25. [PMID: 22116613 DOI: 10.1007/s00894-011-1295-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 10/24/2011] [Indexed: 11/25/2022]
Abstract
Human coagulation Factor X (FX), a member of the vitamin K-dependent serine protease family, is a crucial component of the human coagulation cascade. Activated FX (FXa) participates in forming the prothrombinase complex on activated platelets to convert prothrombin to thrombin in coagulation reactions. In the current study, 30-ns MD simulations were performed on both the open and closed states of human FXa. Root mean squares (RMS) fluctuations showed that structural fluctuations concentrated on the loop regions of FXa, and the presence of a ligand in the closed system resulted in larger fluctuations of the gating residues. The open system had a gating distance from 9.23 to 11.33 Å, i.e., significantly larger than that of the closed system (4.69-6.35 Å), which allows diversified substrates of variable size to enter. Although the solvent accessible surface areas (SASA) of FXa remained the same in both systems, the open system generally had a larger total SASA or hydrophobic SASA (or both) for residues surrounding the S4 pocket. Additionally, more hydrogen bonds were formed in the closed state than in the open state of FXa, which is believed to play a significant role in maintaining the closed confirmation of the aryl-binding site. Based on the results of MD simulations, we propose that an induced-fit mechanism governs the functioning of human coagulation FX, which helps provide a better understanding of the interactions between FXa and its substrate, and the mechanism of the conformational changes involved in human coagulation.
Collapse
Affiliation(s)
- Jing-Fang Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China.
| | | | | | | | | |
Collapse
|
15
|
Wang DH, Qu WL, Shi LQ, Wei J. Molecular docking and pharmacophore model studies of Rho kinase inhibitors. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.554548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Lian P, Wei DQ, Wang JF, Chou KC. An allosteric mechanism inferred from molecular dynamics simulations on phospholamban pentamer in lipid membranes. PLoS One 2011; 6:e18587. [PMID: 21525996 PMCID: PMC3078132 DOI: 10.1371/journal.pone.0018587] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 03/10/2011] [Indexed: 11/18/2022] Open
Abstract
Phospholamban functions as a regulator of Ca(2+) concentration of cardiac muscle cells by triggering the bioactivity of sarcoplasmic reticulum Ca(2+)-ATPase. In order to understand its dynamic mechanism in the environment of bilayer surroundings, we performed long time-scale molecular dynamic simulations based on the high-resolution NMR structure of phospholamban pentamer. It was observed from the molecular dynamics trajectory analyses that the conformational transitions between the "bellflower" and "pinwheel" modes were detected for phospholamban. Particularly, the two modes became quite similar to each other after phospholamban was phosphorylated at Ser16. Based on these findings, an allosteric mechanism was proposed to elucidate the dynamic process of phospholamban interacting with Ca(2+)-ATPase.
Collapse
Affiliation(s)
- Peng Lian
- College of Life Science and Biotechnology and Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- College of Life Science and Biotechnology and Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- Gordon Life Science Institute, San Diego, California, United States of America
| | - Jing-Fang Wang
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Bioinformation and Technology, Shanghai, China
| | - Kuo-Chen Chou
- Gordon Life Science Institute, San Diego, California, United States of America
| |
Collapse
|
17
|
Wang JF, Chou KC. Insights from modeling the 3D structure of New Delhi metallo-β-lactamse and its binding interactions with antibiotic drugs. PLoS One 2011; 6:e18414. [PMID: 21494599 PMCID: PMC3073942 DOI: 10.1371/journal.pone.0018414] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/04/2011] [Indexed: 11/18/2022] Open
Abstract
New Delhi metallo-beta-lactamase (NDM-1) is an enzyme that makes bacteria resistant to a broad range of beta-lactam antibiotic drugs. This is because it can inactivate most beta-lactam antibiotic drugs by hydrolyzing them. For in-depth understanding of the hydrolysis mechanism, the three-dimensional structure of NDM-1 was developed. With such a structural frame, two enzyme-ligand complexes were derived by respectively docking Imipenem and Meropenem (two typical beta-lactam antibiotic drugs) to the NDM-1 receptor. It was revealed from the NDM-1/Imipenem complex that the antibiotic drug was hydrolyzed while sitting in a binding pocket of NDM-1 formed by nine residues. And for the case of NDM-1/Meropenem complex, the antibiotic drug was hydrolyzed in a binding pocket formed by twelve residues. All these constituent residues of the two binding pockets were explicitly defined and graphically labeled. It is anticipated that the findings reported here may provide useful insights for developing new antibiotic drugs to overcome the resistance problem.
Collapse
Affiliation(s)
- Jing-Fang Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Center for Bioinformation and Technology, Shanghai, China
- Gordon Life Science Institute, San Diego, California, United States of America
- * E-mail: (J-FW); (K-CC)
| | - Kuo-Chen Chou
- Gordon Life Science Institute, San Diego, California, United States of America
- * E-mail: (J-FW); (K-CC)
| |
Collapse
|
18
|
Zhang J. Comparison studies of the structural stability of rabbit prion protein with human and mouse prion proteins. J Theor Biol 2011; 269:88-95. [DOI: 10.1016/j.jtbi.2010.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 09/07/2010] [Accepted: 10/15/2010] [Indexed: 11/16/2022]
|
19
|
Khattab SMR, Watanabe S, Saimura M, Kodaki T. A novel strictly NADPH-dependent Pichia stipitis xylose reductase constructed by site-directed mutagenesis. Biochem Biophys Res Commun 2011; 404:634-7. [DOI: 10.1016/j.bbrc.2010.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
|
20
|
Gu H, Chen H, Wei D, Wang J. Molecular dynamics simulations exploring drug resistance in HIV-1 proteases. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11434-010-3257-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Wang JF, Chou KC. Insights from studying the mutation-induced allostery in the M2 proton channel by molecular dynamics. Protein Eng Des Sel 2010; 23:663-6. [PMID: 20571121 DOI: 10.1093/protein/gzq040] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As an essential component of the viral envelope, M2 proton channel plays a central role in the virus replications and has been a key target for drug design against the influenza A viruses. The adamantadine-based drugs, such as amantadine and rimantadine, were developed for blocking the channel so as to suppress the replication of viruses. However, patients, especially those infected by the H1N1 influenza A viruses, are increasingly suffering from the drug-resistance problem. According to the findings revealed recently by the high-resolution NMR studies, the drug-resistance problem is due to the structural allostery caused by some mutations, such as L26F, V27A and S31N, in the four-helix bundle of the channel. In this study, we are to address this problem from a dynamic point of view by conducting molecular dynamics (MD) simulations on both the open and the closed states of the wild-type (WT) and S31N mutant M2 channels in the presence of rimantadine. It was observed from the MD simulated structures that the mutant channel could still keep open even if binding with rimantadine, but the WT channel could not. This was because the mutation would destabilize the helix bundle and trigger it from a compact packing state to a loose one. It is anticipated that the findings may provide useful insights for in-depth understanding the action mechanism of the M2 channel and developing more-effective drugs against influenza A viruses.
Collapse
Affiliation(s)
- Jing-Fang Wang
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, 800 Dongchuan, Shanghai 200240, China.
| | | |
Collapse
|
22
|
|
23
|
Yang J, Li JH, Wang J, Zhang CY. Molecular modeling of BAD complex resided in a mitochondrion integrating glycolysis and apoptosis. J Theor Biol 2010; 266:231-41. [PMID: 20540951 DOI: 10.1016/j.jtbi.2010.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/27/2010] [Accepted: 06/04/2010] [Indexed: 11/15/2022]
Abstract
BAD (Bcl-2 antagonist of cell death) and GK (glucokinase) reside in a mitochondrial complex together with PKA and PP1 catalytic units (PKAc and PP1c) and WAVE-1 that integrates glycolysis and apoptosis. Our research results reveal that BAD is phosphorylated and inactivated on Ser 75 in a BAD-Bcl-xL complex by PKA (targeted to mitochondria through association with WAVE1), resulting in the dissociation of BAD and its binding to GK. Moreover, GK can interact with PP1c and also distinguish WAVE1. On the other hand, BAD is dephosphorylated and activated on Ser75 by PP1c, leading to the separation of PKAc and its binding to the regulatory (R) subunit of PKA which by the dimerization domain of its R subunit connects with WAVE1 linked with GK of the complex. This may be the reason of the complex existing in liver mitochondria, regardless of phosphorylated and dephosphorylated BAD. Additionally, GK like PKA may also prevent Bcl-xL from rebinding to BAD by phosphorylating BAD at Ser 118. The BAD complex model reveals that BAD and GK play key roles because of BAD as a substrate for the PKA-PP1 pair and by BH3 domain directly interacting with GK. This is helpful for our development and research of the molecular mechanism of BAD integrating glycolysis and apoptosis.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210093, PR China.
| | | | | | | |
Collapse
|
24
|
Zhang J. Studies on the structural stability of rabbit prion probed by molecular dynamics simulations of its wild-type and mutants. J Theor Biol 2010; 264:119-22. [PMID: 20109469 DOI: 10.1016/j.jtbi.2010.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 01/08/2010] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
Abstract
Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect humans and animals. Rabbits are the only mammalian species reported to be resistant to infection from prion diseases isolated from other species (Vorberg et al., 2003). Fortunately, the NMR structure of rabbit prion (124-228) (PDB entry 2FJ3), the NMR structure of rabbit prion protein mutation S173N (PDB entry 2JOH) and the NMR structure of rabbit prion protein mutation I214V (PDB entry 2JOM) were released recently. This paper studies these NMR structures by molecular dynamics simulations. Simulation results confirm the structural stability of wild-type rabbit prion, and show that the salt bridge between D177 and R163 greatly contributes to the structural stability of rabbit prion protein.
Collapse
Affiliation(s)
- Jiapu Zhang
- Victorian Life Sciences Computation Initiative, The University of Melbourne, 1 Hull Road, Croydon, VIC 3136, Australia.
| |
Collapse
|
25
|
Tiwari M, Lee JK. Molecular modeling studies of L-arabinitol 4-dehydrogenase of Hypocrea jecorina: its binding interactions with substrate and cofactor. J Mol Graph Model 2010; 28:707-13. [PMID: 20171913 DOI: 10.1016/j.jmgm.2010.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 01/09/2010] [Indexed: 10/20/2022]
Abstract
L-arabinitol 4-dehydrogenase (LAD1; EC 1.1.1.12) is an enzyme in the L-arabinose catabolic pathway of fungi that catalyzes the conversion of L-arabinitol into L-xylulose. The primary objective of this work is to identify the catalytic and coenzyme binding domains of LAD1 from Hypocrea jecorina in order to provide better insight into the possible catalytic events in these domains. The 3D structure of NAD(+)-dependent LAD1 was developed based on the crystal structure of human sorbitol dehydrogenase as a template. A series of molecular mechanics and dynamics operations were performed to find the most stable binding interaction for the enzyme and its ligands. Using the verified model, a docking study was performed with the substrate L-arabinitol, Zn(2+) and NAD(+). This study found a catalytic Zn(2+) binding domain (Cys66, His91, Glu92 and Glu176) and a cofactor NAD(+) binding domain (Gly202, ILeu204, Gly205, Cys273, Arg229 and Val298) with strong hydrogen bonding contacts with the substrate and cofactor. The binding pockets of the enzyme for l-arabinitol, NAD(+), and Zn(2+) have been explicitly defined. The results from this study should guide future mutagenesis studies and provide useful clues for engineering enzymes to improve the utilization of polyols for rare sugar production.
Collapse
Affiliation(s)
- Manish Tiwari
- Department of Chemical Engineering, Konkuk University, Seoul 143-701, Republic of Korea
| | | |
Collapse
|
26
|
Shine Y, Kikuchi T. Estimation of relative binding free energy based on a free energy variational principle for quantitative structure activity relationship analyses. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2009.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Structural flexibility and interactions of PTP1B’s S-loop. Interdiscip Sci 2009; 1:214-9. [DOI: 10.1007/s12539-009-0047-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/19/2009] [Accepted: 04/23/2009] [Indexed: 11/26/2022]
|
28
|
Wang JF, Wei DQ. Role of structural bioinformatics and traditional Chinese medicine databases in pharmacogenomics. Pharmacogenomics 2009; 10:1213-5. [DOI: 10.2217/pgs.09.81] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Dong-Qing Wei
- Department of Bioinformatics & Biostatistics, College of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai, China 200240
| |
Collapse
|
29
|
Zeng QK, Du HL, Wang JF, Wei DQ, Wang XN, Li YX, Lin Y. Reversal of coenzyme specificity and improvement of catalytic efficiency of Pichia stipitis xylose reductase by rational site-directed mutagenesis. Biotechnol Lett 2009; 31:1025-1029. [PMID: 19330484 DOI: 10.1007/s10529-009-9980-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 02/27/2009] [Accepted: 03/09/2009] [Indexed: 10/21/2022]
Abstract
A major problem when xylose is used for ethanol production is the intercellular redox imbalance arising from different coenzyme specificities of xylose reductase (XR) and xylitol dehydrogenase. The residue Lys21 in XR from Pichia stipitis was subjected to site-directed mutagenesis to alter its coenzyme specificity. The N272D mutant exhibited improved catalytic efficiency when NADH was the coenzyme. Both K21A and K21A/N272D preferred NADH to NADPH, their catalytic efficiencies for NADPH were almost zero. The catalytic efficiency of K21A/N272D for NADH was almost 9-fold and 2-fold that of K21A and the wild-type enzyme, respectively. Complete reversal of coenzyme specificity toward NADH and improved catalytic efficiency were achieved.
Collapse
Affiliation(s)
- Qi-Kai Zeng
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Van Vleet JH, Jeffries TW. Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 2009; 20:300-6. [PMID: 19545992 DOI: 10.1016/j.copbio.2009.06.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/30/2009] [Accepted: 06/03/2009] [Indexed: 11/19/2022]
Abstract
Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of fungal xylose isomerase or modification of cofactor requirements in the yeast oxidoreductase pathway can reduce xylitol production while increasing ethanol yields, but these changes often occur at the expense of xylose utilization rates. Genetic engineering and evolutionary adaptation to increase glycolytic flux coupled with transcriptomic and proteomic studies have identified targets for further modification, as have genomic and metabolic engineering studies in native xylose fermenting yeasts.
Collapse
Affiliation(s)
- J H Van Vleet
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
31
|
Wang JF, Gong K, Wei DQ, Li YX, Chou KC. Molecular dynamics studies on the interactions of PTP1B with inhibitors: from the first phosphate-binding site to the second one. Protein Eng Des Sel 2009; 22:349-55. [PMID: 19380334 DOI: 10.1093/protein/gzp012] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein tyrosine phosphatases 1B (PTP1B) is a major negative regulator of both insulin and leptin signaling pathways. In view of this, it becomes an important target for drug development against cancers, diabetes and obesity. The aim of the current study is to use the long time-scale molecular dynamics (MD) simulations to investigate the structural and dynamic factors that cause its inhibition by INTA and INTB, the two most potent and highly selective PTP1B inhibitors known so far. In order to investigate the mode of collective motions that is vitally important to the biological function, the covariance matrix of C(alpha) atoms was introduced for performing the dynamic analysis of the inhibition systems. It has been observed that the conformational and dynamic features of WPD-Loop, R-Loop and S-Loop play a key role in providing a smooth entrance for the inhibitors moving into the binding pocket as well as a favorable microenvironment to stabilize them. Furthermore, the hydrogen bonding networks formed around the active site with INTA and INTB may be the main reason of why the inhibition of PTP1B by the two ligands is so potent and selective. All these findings might provide useful insights for developing novel and effective drugs to treat cancer, diabetes and obesity.
Collapse
Affiliation(s)
- Jing-Fang Wang
- Bioinformatics Center, Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, Peoples Republic of China
| | | | | | | | | |
Collapse
|
32
|
Study of Inhibitors Against SARS Coronavirus by Computational Approaches. VIRAL PROTEASES AND ANTIVIRAL PROTEASE INHIBITOR THERAPY 2009. [PMCID: PMC7122585 DOI: 10.1007/978-90-481-2348-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Chen CYC. Insights into the suanzaoren mechanism—From constructing the 3D structure of GABA-A receptor to its binding interaction analysis. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.jcice.2008.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Shen HB, Chou KC. Predicting protein fold pattern with functional domain and sequential evolution information. J Theor Biol 2008; 256:441-6. [PMID: 18996396 DOI: 10.1016/j.jtbi.2008.10.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/12/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
Abstract
The fold pattern of a protein is one level deeper than its structural classification, and hence is more challenging and complicated for prediction. Many efforts have been made in this regard, but so far all the reported success rates are still under 70%, indicating that it is extremely difficult to enhance the success rate even by 1% or 2%. To address this problem, here a novel approach is proposed that is featured by combining the functional domain information and the sequential evolution information through a fusion ensemble classifier. The predictor thus developed is called PFP-FunDSeqE. Tests were performed for identifying proteins among their 27 fold patterns. Compared with the existing predictors tested by a same stringent benchmark dataset, the new predictor can, for the first time, achieve over 70% success rate. The PFP-FunDSeqE predictor is freely available to the public as a web server at http://www.csbio.sjtu.edu.cn/bioinf/PFP-FunDSeqE/.
Collapse
Affiliation(s)
- Hong-Bin Shen
- Institute of Image Processing & Pattern Recognition, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China.
| | | |
Collapse
|
35
|
Ye Y, Wei J, Dai X, Gao Q. Computational studies of the binding modes of A 2A adenosine receptor antagonists. Amino Acids 2008; 35:389-96. [PMID: 17978889 PMCID: PMC7087644 DOI: 10.1007/s00726-007-0604-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 09/12/2007] [Indexed: 11/25/2022]
Abstract
A molecular docking study was performed on several structurally diverse A(2A) AR antagonists, including xanthines, and non-xanthine type antagonists to investigate their binding modes with A(2A) adenosine receptor (AR), one of the four subtypes of AR, which is currently of great interest as a target for therapeutic intervention, in particular for Parkinson's disease. The high-affinity binding site was found to be a hydrophobic pocket with the involvement of hydrogen bonding interactions as well as pi-pi stacking interactions with the ligands. The detailed binding modes for both xanthine and non-xanthine type A(2A) antagonists were compared and the essential features were extracted and converted to database searchable queries for virtual screening study of novel A(2A) AR antagonists. Findings from this study are helpful for elucidating the binding pattern of A(2A) AR antagonists and for the design of novel active ligands.
Collapse
Affiliation(s)
- Y. Ye
- />School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - J. Wei
- />School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - X. Dai
- />Chemistry Department, XenoPort Inc., Santa Clara, CA U.S.A
| | - Q. Gao
- />Chemistry Department, XenoPort Inc., Santa Clara, CA U.S.A
| |
Collapse
|
36
|
|
37
|
Housaindokht MR, Bozorgmehr MR, Bahrololoom M. Analysis of ligand binding to proteins using molecular dynamics simulations. J Theor Biol 2008; 254:294-300. [PMID: 18599089 DOI: 10.1016/j.jtbi.2008.04.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 11/19/2022]
Abstract
This work aims to explore theoretically the molecular mechanisms of ligand binding to proteins through the use of molecular dynamics simulations. The binding of sodium dodecyl sulfate (SDS) to cobra cardio toxin A3 (CTX A3) and thiourea (TOU) to lysozyme have been chosen as the two model systems. Data acquisitions were made by Gromacs software. To begin with, the collisions of ligand molecules with every residue of CTX A3 and lysozyme were evaluated. With this information in hand, the average numbers of collisions with each residue was defined and then assessed. Next, a measure of the affinity of a residue, P(i), referred to as conformational factor, toward a ligand molecule was established. Based on the results provided, all site-making residues for CTX A3 and lysozyme were identified. The results are in good agreement with the experimental data. Finally, based on this method, all site-making residues of bovine carbonic anhydrase (BCA) toward the SDS ligand were predicted.
Collapse
Affiliation(s)
- M R Housaindokht
- Biophysical Chemistry Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran.
| | | | | |
Collapse
|
38
|
Lee TC, Lee ASG, Li KB. Incorporating the amino acid properties to predict the significance of missense mutations. Amino Acids 2008; 35:615-26. [DOI: 10.1007/s00726-008-0087-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/26/2008] [Indexed: 11/25/2022]
|
39
|
Wu G, Yan S. Prediction of mutations engineered by randomness in H5N1 hemagglutinins of influenza A virus. Amino Acids 2007; 35:365-73. [PMID: 17973072 PMCID: PMC7088403 DOI: 10.1007/s00726-007-0602-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Accepted: 09/30/2007] [Indexed: 11/28/2022]
Abstract
This is the continuation of our studies on the prediction of mutation engineered by randomness in proteins from influenza A virus. In our previous studies, we have demonstrated that randomness plays a role in engineering mutations because the measures of randomness in protein are different before and after mutations. Thus we built a cause-mutation relationship to count the mutation engineered by randomness, and conducted several concept-initiated studies to predict the mutations in proteins from influenza A virus, which demonstrated the possibility of prediction of mutations along this line of thought. On the other hand, these concept-initiated studies indicate the directions forwards the enhancement of predictability, of which we need to use the neural network instead of logistic regression that was used in those concept-initiated studies to enhance the predictability. In this proof-of-concept study, we attempt to apply the neural network to modeling the cause-mutation relationship to predict the possible mutation positions, and then we use the amino acid mutating probability to predict the would-be-mutated amino acids at predicted positions. The results confirm the possibility of use of internal cause-mutation relationship with neural network model to predict the mutation positions and use of amino acid mutating probability to predict the would-be-mutated amino acids.
Collapse
Affiliation(s)
- G Wu
- Computational Mutation Project, DreamSciTech Consulting, Shenzhen, Guangdong Province, China.
| | | |
Collapse
|
40
|
Wu G, Yan S. Prediction of mutations engineered by randomness in H5N1 neuraminidases from influenza A virus. Amino Acids 2007; 34:81-90. [PMID: 17721674 PMCID: PMC7088166 DOI: 10.1007/s00726-007-0579-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 07/03/2007] [Indexed: 12/03/2022]
Abstract
In this proof-of-concept study, we attempt to determine whether the cause-mutation relationship defined by randomness is protein dependent by predicting mutations in H5N1 neuraminidases from influenza A virus, because we have recently conducted several concept-initiated studies on the prediction of mutations in hemagglutinins from influenza A virus. In our concept-initiated studies, we defined the randomness as a cause for mutation, upon which we built a cause-mutation relationship, which is then switched into the classification problem because the occurrence and non-occurrence of mutations can be classified as unity and zero. Thereafter, we used the logistic regression and neural network to solve this classification problem to predict the mutation positions in hemagglutinins, and then used the amino acid mutating probability to predict the would-be-mutated amino acids. As the previous results were promising, we extend this approach to other proteins, such as H5N1 neuraminidase in this study, and further address various issues raised during the development of this approach. The result of this study confirms that we can use this cause-mutation relationship to predict the mutations in H5N1 neuraminidases.
Collapse
Affiliation(s)
- G Wu
- DreamSciTech Consulting, Guangdong Province, China.
| | | |
Collapse
|
41
|
Prediction of Mutations Initiated by Internal Power in H3N2 Hemagglutinins of Influenza A Virus from North America. Int J Pept Res Ther 2007. [DOI: 10.1007/s10989-007-9104-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|