1
|
Comparative Genomics of the BDNF Gene, Non-Canonical Modes of Transcriptional Regulation, and Neurological Disease. Mol Neurobiol 2021; 58:2851-2861. [PMID: 33517560 DOI: 10.1007/s12035-021-02306-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Alternative splicing of genes in the central nervous system is ubiquitous and utilizes many different mechanisms. Splicing generates unique transcript or protein isoforms of the primary gene that result in shortened, lengthened, or reorganized products that may have distinct functions from the parent gene. Learning and memory genes respond selectively to a variety of environmental stimuli and have evolved a number of complex mechanisms for transcriptional regulation to act rapidly and flexibly to environmental demands. Their patterns of expression, however, are incompletely understood. Many activity-inducible genes generate transcripts by alternative splicing that have an unknown physiological or behavioral function. One such gene codes for the protein brain-derived neurotrophic factor (BDNF). BDNF is a neurotrophin whose expression is essential for cellular growth, synaptogenesis, and synaptic plasticity. It is an important model gene because of its complex structure and the variety of transcriptional mechanisms it displays for expression in response to external stimuli. Some of these are unexpected, or non-canonical, transcriptional control mechanisms that require further exploration in an activity-dependent context. In this review, a comparative genomics approach is taken to highlight the different forms of BDNF gene transcription including potential autoregulatory mechanisms. Modes of BDNF control have general implications for understanding the origins of several neurological disorders that are associated with reduced BDNF function.
Collapse
|
2
|
Learning-Dependent Transcriptional Regulation of BDNF by its Truncated Protein Isoform in Turtle. J Mol Neurosci 2020; 71:999-1014. [DOI: 10.1007/s12031-020-01722-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
|
3
|
ZEB1 Represses Neural Differentiation and Cooperates with CTBP2 to Dynamically Regulate Cell Migration during Neocortex Development. Cell Rep 2020; 27:2335-2353.e6. [PMID: 31116980 DOI: 10.1016/j.celrep.2019.04.081] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 02/28/2019] [Accepted: 04/16/2019] [Indexed: 01/08/2023] Open
Abstract
Zinc-finger E-box binding homeobox 1 (Zeb1) is a key regulator of epithelial-mesenchymal transition and cancer metastasis. Mutation of ZEB1 is associated with human diseases and defective brain development. Here we show that downregulation of Zeb1 expression in embryonic cortical neural progenitor cells (NPCs) is necessary for proper neuronal differentiation and migration. Overexpression of Zeb1 during neuronal differentiation, when its expression normally declines, blocks NPC lineage progression and disrupts multipolar-to-bipolar transition of differentiating neurons, leading to severe migration defects and subcortical heterotopia bands at postnatal stages. ZEB1 regulates a cohort of genes involved in cell differentiation and migration, including Neurod1 and Pard6b. The interaction between ZEB1 and CTBP2 in the embryonic cerebral cortex is required for ZEB1 to elicit its effect on the multipolar-to-bipolar transition, but not its suppression of Neurod1. These findings provide insights into understanding the complexity of transcriptional regulation during neuronal differentiation.
Collapse
|
4
|
Llorens MC, Rossi FA, García IA, Cooke M, Abba MC, Lopez-Haber C, Barrio-Real L, Vaglienti MV, Rossi M, Bocco JL, Kazanietz MG, Soria G. PKCα Modulates Epithelial-to-Mesenchymal Transition and Invasiveness of Breast Cancer Cells Through ZEB1. Front Oncol 2019; 9:1323. [PMID: 31828042 PMCID: PMC6890807 DOI: 10.3389/fonc.2019.01323] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
ZEB1 is a master regulator of the Epithelial-to-Mesenchymal Transition (EMT) program. While extensive evidence confirmed the importance of ZEB1 as an EMT transcription factor that promotes tumor invasiveness and metastasis, little is known about its regulation. In this work, we screened for potential regulatory links between ZEB1 and multiple cellular kinases. Exploratory in silico analysis aided by phospho-substrate antibodies and ZEB1 deletion mutants led us to identify several potential phospho-sites for the family of PKC kinases in the N-terminus of ZEB1. The analysis of breast cancer cell lines panels with different degrees of aggressiveness, together with the evaluation of a battery of kinase inhibitors, allowed us to expose a robust correlation between ZEB1 and PKCα both at mRNA and protein levels. Subsequent validation experiments using siRNAs against PKCα revealed that its knockdown leads to a concomitant decrease in ZEB1 levels, while ZEB1 knockdown had no impact on PKCα levels. Remarkably, PKCα-mediated downregulation of ZEB1 recapitulates the inhibition of mesenchymal phenotypes, including inhibition in cell migration and invasiveness. These findings were extended to an in vivo model, by demonstrating that the stable knockdown of PKCα using lentiviral shRNAs markedly impaired the metastatic potential of MDA-MB-231 breast cancer cells. Taken together, our findings unveil an unforeseen regulatory pathway comprising PKCα and ZEB1 that promotes the activation of the EMT in breast cancer cells.
Collapse
Affiliation(s)
- María Candelaria Llorens
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fabiana Alejandra Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires, IBioBA-CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Translational Medicine Research Institute (IIMT), CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
| | - Iris Alejandra García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Martin C. Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, CONICET, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cynthia Lopez-Haber
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Laura Barrio-Real
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - María Victoria Vaglienti
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mario Rossi
- Instituto de Investigación en Biomedicina de Buenos Aires, IBioBA-CONICET, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Translational Medicine Research Institute (IIMT), CONICET, Facultad de Ciencias Biomédicas, Universidad Austral, Buenos Aires, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcelo G. Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
5
|
Llorens MC, Lorenzatti G, Cavallo NL, Vaglienti MV, Perrone AP, Carenbauer AL, Darling DS, Cabanillas AM. Phosphorylation Regulates Functions of ZEB1 Transcription Factor. J Cell Physiol 2016; 231:2205-17. [PMID: 26868487 DOI: 10.1002/jcp.25338] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 02/09/2016] [Indexed: 01/02/2023]
Abstract
ZEB1 transcription factor is important in both development and disease, including many TGFβ-induced responses, and the epithelial-to-mesenchymal transition (EMT) by which many tumors undergo metastasis. ZEB1 is differentially phosphorylated in different cell types; however the role of phosphorylation in ZEB1 activity is unknown. Luciferase reporter studies and electrophoresis mobility shift assays (EMSA) show that a decrease in phosphorylation of ZEB1 increases both DNA-binding and transcriptional repression of ZEB1 target genes. Functional analysis of ZEB1 phosphorylation site mutants near the second zinc finger domain (termed ZD2) show that increased phosphorylation (due to either PMA plus ionomycin, or IGF-1) can inhibit transcriptional repression by either a ZEB1-ZD2 domain clone, or full-length ZEB1. This approach identifies phosphosites that have a substantial effect regulating the transcriptional and DNA-binding activity of ZEB1. Immunoprecipitation with anti-ZEB1 antibodies followed by western analysis with a phospho-Threonine-Proline-specific antibody indicates that the ERK consensus site at Thr-867 is phosphorylated in ZEB1. In addition to disrupting in vitro DNA-binding measured by EMSA, IGF-1-induced MEK/ERK phosphorylation is sufficient to disrupt nuclear localization of GFP-ZEB1 fusion clones. These data suggest that phosphorylation of ZEB1 integrates TGFβ signaling with other signaling pathways such as IGF-1. J. Cell. Physiol. 231: 2205-2217, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Candelaria Llorens
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Guadalupe Lorenzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Natalia L Cavallo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Maria V Vaglienti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Ana P Perrone
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| | - Anne L Carenbauer
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Kentucky
- Center for Genetics and Molecular Medicine, University of Louisville, Kentucky
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Kentucky
- Center for Genetics and Molecular Medicine, University of Louisville, Kentucky
| | - Ana M Cabanillas
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Córdoba, Argentina
| |
Collapse
|
6
|
Sztukowska MN, Ojo A, Ahmed S, Carenbauer AL, Wang Q, Shumway B, Jenkinson HF, Wang H, Darling DS, Lamont RJ. Porphyromonas gingivalis initiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells. Cell Microbiol 2016; 18:844-58. [PMID: 26639759 DOI: 10.1111/cmi.12554] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
The oral anaerobe Porphyromonas gingivalis is associated with the development of cancers including oral squamous cell carcinoma (OSCC). Here, we show that infection of gingival epithelial cells with P. gingivalis induces expression and nuclear localization of the ZEB1 transcription factor, which controls epithelial-mesenchymal transition. P. gingivalis also caused an increase in ZEB1 expression as a dual species community with Fusobacterium nucleatum or Streptococcus gordonii. Increased ZEB1 expression was associated with elevated ZEB1 promoter activity and did not require suppression of the miR-200 family of microRNAs. P. gingivalis strains lacking the FimA fimbrial protein were attenuated in their ability to induce ZEB1 expression. ZEB1 levels correlated with an increase in expression of mesenchymal markers, including vimentin and MMP-9, and with enhanced migration of epithelial cells into matrigel. Knockdown of ZEB1 with siRNA prevented the P. gingivalis-induced increase in mesenchymal markers and epithelial cell migration. Oral infection of mice by P. gingivalis increased ZEB1 levels in gingival tissues, and intracellular P. gingivalis were detected by antibody staining in biopsy samples from OSCC. These findings indicate that FimA-driven ZEB1 expression could provide a mechanistic basis for a P. gingivalis contribution to OSCC.
Collapse
Affiliation(s)
- Maryta N Sztukowska
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Akintunde Ojo
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Saira Ahmed
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Anne L Carenbauer
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Qian Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Brain Shumway
- Department of Surgical and Hospital Dentistry, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | | | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| |
Collapse
|
7
|
Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes. PLoS One 2013; 8:e66398. [PMID: 23824082 PMCID: PMC3688923 DOI: 10.1371/journal.pone.0066398] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/06/2013] [Indexed: 12/17/2022] Open
Abstract
The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from their known hypothalamic signal transduction function.
Collapse
|
8
|
Jia B, Liu H, Kong Q, Li B. Overexpression of ZEB1 associated with metastasis and invasion in patients with gastric carcinoma. Mol Cell Biochem 2012; 366:223-9. [PMID: 22466758 DOI: 10.1007/s11010-012-1299-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 03/17/2012] [Indexed: 01/07/2023]
Abstract
The aim of this study was to investigate the expression of ZEB1 in gastric carcinoma, its correlation with the clinicopathology of gastric carcinoma, and the role of ZEB1 in invasion and metastasis in gastric carcinoma. ZEB1 expression was analyzed by immunohistochemistry and Western blot in 45 gastric carcinoma tissue samples that contained the adjacent gastric mucosa. The correlation between ZEB1 expression, the occurrence and development of gastric cancer, and clinical pathology was investigated. ZEB1 expression in the human gastric carcinoma cell line AGS was downregulated by RNA interference, and changes in ZEB1 expression corresponded with changes in the invasive and metastatic ability of AGS cells. Immunohistochemistry revealed that ZEB1 protein expression in gastric carcinoma tissues was significantly higher than in normal gastric mucosa tissues (p < 0.001). A lower degree of differentiation of gastric cancer (p = 0.009), a higher TNM (tumor, node, and metastasis) stage (p = 0.010), and a larger scope of invasion were correlated with higher expression of ZEB1 (p = 0.041, 0.002). However, the expression of ZEB1 in gastric carcinoma tissue was independent of gender, age, and tumor size (p > 0.05). Western blot results also showed that ZEB1 protein expression was significantly higher in gastric carcinoma tissue than in the adjacent normal gastric mucosa tissue (p = 0.008). A lower degree of differentiation of the gastric carcinoma correlated with a higher TNM stage, and a larger scope of invasion correlated with increased ZEB1 expression (p = 0.023). Transfection of ZEB1 siRNA in AGS cells significantly decreased the expression level of ZEB1 protein (p = 0.035). Furthermore, the number of cells that could pass through the Transwell chamber was significantly lower in the transfected group than in the non-transfected control group (p = 0.039), indicating that the suppression of ZEB1 expression could significantly reduce the invasive and metastatic ability of AGS cells (p = 0.005). Concluding, in gastric carcinoma tissue, overexpression of ZEB1 may be related to the occurrence and development as well as invasion and metastasis of gastric carcinoma.
Collapse
Affiliation(s)
- Baoqing Jia
- Department of Surgical Oncology, General Hospital of Chinese People's Liberation Army, No. 28, Fuxing Rd, Beijing 100853, People's Republic of China.
| | | | | | | |
Collapse
|
9
|
Yellore VS, Rayner SA, Nguyen CK, Gangalum RK, Jing Z, Bhat SP, Aldave AJ. Analysis of the role of ZEB1 in the pathogenesis of posterior polymorphous corneal dystrophy. Invest Ophthalmol Vis Sci 2012; 53:273-8. [PMID: 22199242 DOI: 10.1167/iovs.11-8038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To determine how nonsense mutations in the transcription factor ZEB1 lead to the development of posterior polymorphous corneal dystrophy type 3 (PPCD3). METHODS Whole-cell extracts were obtained from cultured human corneal epithelial cells (HCEpCs) as a source of ZEB1 protein. DNA-binding assays were performed using the whole-cell extract and oligonucleotide probes consisting of the two conserved E2-box motifs and surrounding nucleotides upstream of COL4A3. ZEB1 and COL4A3 mRNA expression in primary human corneal endothelial cells (HCEnCs) was assayed in both PPCD3 and control corneas by RT-PCR. Immunohistochemistry was used to localize ZEB1 and COL4A3 expression in normal human cornea. RESULTS Electromobility shift assays (EMSAs) and competition EMSAs demonstrated binding of protein(s) in the cultured HCEpCs to the E2-box motifs in the probes. The supershift EMSA confirmed that ZEB1, demonstrated to be present in the whole-cell extracts, binds to both the proximal and distal E2-box motifs in the COL4A3 promoter region. Both COL4A3 and ZEB1 are expressed in normal HCEnCs, although in PPCD3, ZEB1 expression is decreased and COL4A3 expression is increased compared with levels of both genes in healthy control corneas. CONCLUSIONS Inversely related HCEnC expression levels of ZEB1 and COL4A3 in PPCD3 indicate that ZEB1-mediated alterations in COL4A3 expression are most likely associated with the pathogenesis of this corneal endothelial dystrophy. However, the demonstration of COL4A3 expression in healthy adult primary HCEnCs suggests that PPCD3 is more likely to involve an alteration in the timing and/or degree of COL4A3 expression than to result from the dichotomous change implied by the previously proposed ectopic expression model.
Collapse
Affiliation(s)
- Vivek S Yellore
- Jules Stein Eye Institute, David Geffen School of Medicine at the University of California, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Lorenzatti G, Huang W, Pal A, Cabanillas AM, Kleer CG. CCN6 (WISP3) decreases ZEB1-mediated EMT and invasion by attenuation of IGF-1 receptor signaling in breast cancer. J Cell Sci 2011; 124:1752-8. [PMID: 21525039 DOI: 10.1242/jcs.084194] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During progression of breast cancer, CCN6 protein exerts tumor inhibitory functions. CCN6 is a secreted protein that modulates the insulin-like growth factor-1 (IGF-1) signaling pathway. Knockdown of CCN6 in benign mammary epithelial cells triggers an epithelial to mesenchymal transition (EMT), with upregulation of the transcription factor ZEB1/δEF1. How CCN6 regulates ZEB1 expression is unknown. We hypothesized that CCN6 might regulate ZEB1, EMT and breast cancer invasion by modulating IGF-1 signaling. Exogenously added human recombinant CCN6 protein was sufficient to downregulate ZEB1 mRNA and protein levels in CCN6-deficient (CCN6 KD) HME cells and MDA-MB-231 breast cancer cells. Recombinant CCN6 protein decreased invasion of CCN6 KD cells compared with controls. We discovered that knockdown of CCN6 induced IGF-1 secretion in HME cells cultivated in serum-free medium to higher concentrations than found in MDA-MB-231 cells. Treatment with recombinant CCN6 protein was sufficient to decrease IGF-1 protein and mRNA to control levels, rescuing the effect of CCN6 knockdown. Specific inhibition of IGF-1 receptors using the pharmacological inhibitor NVP-AE541 or short hairpin shRNAs revealed that ZEB1 upregulation due to knockdown of CCN6 requires activation of IGF-1 receptor signaling. Recombinant CCN6 blunted IGF-1-induced ZEB1 upregulation in MDA-MB-231 cells. Our data define a pathway in which CCN6 attenuates IGF-1 signaling to decrease ZEB1 expression and invasion in breast cancer. These results suggest that CCN6 could be a target to prevent or halt breast cancer invasion.
Collapse
Affiliation(s)
- Guadalupe Lorenzatti
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | | | | | |
Collapse
|
11
|
Anose BM, Sanders MM. Androgen Receptor Regulates Transcription of the ZEB1 Transcription Factor. Int J Endocrinol 2011; 2011:903918. [PMID: 22190929 PMCID: PMC3235469 DOI: 10.1155/2011/903918] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/15/2011] [Indexed: 11/17/2022] Open
Abstract
The zinc finger E-box binding protein 1 (ZEB1) transcription factor belongs to a two-member family of zinc-finger homeodomain proteins involved in physiological and pathological events mostly relating to cell migration and epithelial to mesenchymal transitions (EMTs). ZEB1 (also known as δEF1, zfhx1a, TCF8, and Zfhep) plays a key role in regulating such diverse processes as T-cell development, skeletal patterning, reproduction, and cancer cell metastasis. However, the factors that regulate its expression and consequently the signaling pathways in which ZEB1 participates are poorly defined. Because it is induced by estrogen and progesterone and is high in prostate cancer, we investigated whether tcf8, which encodes ZEB1, is regulated by androgen. Data herein demonstrate that tcf8 is induced by dihydrotestosterone (DHT) in the human PC-3/AR prostate cancer cell line and that this induction is mediated by two androgen response elements (AREs). These results demonstrate that ZEB1 is an intermediary in androgen signaling pathways.
Collapse
Affiliation(s)
- Bynthia M. Anose
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, Bethel University, St. Paul, MN 55112, USA
| | - Michel M. Sanders
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- *Michel M. Sanders:
| |
Collapse
|
12
|
Fine-mapping resolves Eae23 into two QTLs and implicates ZEB1 as a candidate gene regulating experimental neuroinflammation in rat. PLoS One 2010; 5:e12716. [PMID: 20856809 PMCID: PMC2939884 DOI: 10.1371/journal.pone.0012716] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 08/12/2010] [Indexed: 11/22/2022] Open
Abstract
Background To elucidate mechanisms involved in multiple sclerosis (MS), we studied genetic regulation of experimental autoimmune encephalomyelitis (EAE) in rats, assuming a conservation of pathogenic pathways. In this study, we focused on Eae23, originally identified to regulate EAE in a (LEW.1AV1xPVG.1AV1)F2 cross. Our aim was to determine whether one or more genes within the 67 Mb region regulate EAE and to define candidate risk genes. Methodology/Principal Findings We used high resolution quantitative trait loci (QTL) analysis in the 10th generation (G10) of an advanced intercross line (AIL) to resolve Eae23 into two QTLs that independently regulate EAE, namely Eae23a and Eae23b. We established a congenic strain to validate the effect of this region on disease. PVG alleles in Eae23 resulted in significant protection from EAE and attenuated CNS inflammation/demyelination. Disease amelioration was accompanied with increased levels of Foxp3+ cells in the CNS of the congenic strain compared to DA. We then focused on candidate gene investigation in Eae23b, a 9 Mb region linked to all clinical phenotypes. Affymetrix exon arrays were used to study expression of the genes in Eae23b in the parental strains, where none showed differential expression. However, we found lower expression of exon 4 of ZEB1, which is specific for splice-variant Zfhep1. ZEB1 is an interleukin 2 (IL2) repressor involved in T cell development. The splice-specific variance prompted us to next analyze the expression of ZEB1 and its two splice variants, Zfhep1 and Zfhep2, in both lymph node and spleen. We demonstrated that ZEB1 splice-variants are differentially expressed; severity of EAE and higher IL2 levels were associated with down-regulation of Zfhep1 and up-regulation of Zfhep2. Conclusions/Significance We speculate that the balance between splice-variants of ZEB1 could influence the regulation of EAE. Further functional studies of ZEB1 and the splice-variants may unravel novel pathways contributing to MS pathogenesis and inflammation in general.
Collapse
|
13
|
Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28:151-66. [PMID: 19153669 DOI: 10.1007/s10555-008-9179-y] [Citation(s) in RCA: 614] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The embryonic program 'epithelial-mesenchymal transition' (EMT) is activated during tumor invasion in disseminating cancer cells. Characteristic to these cells is a loss of E-cadherin expression, which can be mediated by EMT-inducing transcriptional repressors, e.g. ZEB1. Consequences of a loss of E-cadherin are an impairment of cell-cell adhesion, which allows detachment of cells, and nuclear localization of beta-catenin. In addition to an accumulation of cancer stem cells, nuclear beta-catenin induces a gene expression pattern favoring tumor invasion, and mounting evidence indicates multiple reciprocal interactions of E-cadherin and beta-catenin with EMT-inducing transcriptional repressors to stabilize an invasive mesenchymal phenotype of epithelial tumor cells.
Collapse
Affiliation(s)
- Otto Schmalhofer
- Department of Visceral Surgery, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | | | | |
Collapse
|
14
|
Hurt EM, Saykally JN, Anose BM, Kalli KR, Sanders MM. Expression of the ZEB1 (deltaEF1) transcription factor in human: additional insights. Mol Cell Biochem 2008; 318:89-99. [PMID: 18622689 DOI: 10.1007/s11010-008-9860-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 06/25/2008] [Indexed: 01/13/2023]
Abstract
The zinc finger E-box binding transcription factor ZEB1 (deltaEF1/Nil-2-a/AREB6/zfhx1a/TCF8/zfhep/BZP) is emerging as an important regulator of the epithelial to mesenchymal transitions (EMT) required for development and cancer metastasis. ZEB1 promotes EMT by repressing genes contributing to the epithelial phenotype while activating those associated with the mesenchymal phenotype. TCF8 (zfhx1a), the gene encoding ZEB1, is induced by several potentially oncogenic ligands including TGF-beta, estrogen, and progesterone. TGF-beta appears to activate EMT, at least in part, by inducing ZEB1. However, our understanding of how ZEB1 contributes to signaling pathways elicited by estrogen and progesterone is quite limited, as is our understanding of its functional roles in normal adult tissues. To begin to address these questions, a human tissue mRNA array analysis was done. In adults, the highest ZEB1 mRNA expression is in bladder and uterus, whereas in the fetus highest expression is in lung, thymus, and heart. To further investigate the regulation of TCF8 by estrogen, ZEB1 mRNA was measured in ten estrogen-responsive cell lines, but it is only induced in the OV266 ovarian carcinoma line. Although high expression of ZEB1 mRNA is estrogen-dependent in normal human ovarian and endometrial biopsies, high expression is estrogen-independent in late stage ovarian and endometrial carcinomas, raising the possibility that deregulated expression promotes cancer progression. In contrast, TCF8 is at least partially deleted in 4 of 5 well-differentiated, grade I endometrial carcinomas, which may contribute to their non-aggressive phenotype. These data support the contention that high ZEB1 encourages gynecologic carcinoma progression.
Collapse
Affiliation(s)
- Elaine M Hurt
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|