1
|
Tassinari M, Rudzite M, Filloux A, Low HH. Assembly mechanism of a Tad secretion system secretin-pilotin complex. Nat Commun 2023; 14:5643. [PMID: 37704603 PMCID: PMC10499894 DOI: 10.1038/s41467-023-41200-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023] Open
Abstract
The bacterial Tight adherence Secretion System (TadSS) assembles surface pili that drive cell adherence, biofilm formation and bacterial predation. The structure and mechanism of the TadSS is mostly unknown. This includes characterisation of the outer membrane secretin through which the pilus is channelled and recruitment of its pilotin. Here we investigate RcpA and TadD lipoprotein from Pseudomonas aeruginosa. Light microscopy reveals RcpA colocalising with TadD in P. aeruginosa and when heterologously expressed in Escherichia coli. We use cryogenic electron microscopy to determine how RcpA and TadD assemble a secretin channel with C13 and C14 symmetries. Despite low sequence homology, we show that TadD shares a similar fold to the type 4 pilus system pilotin PilF. We establish that the C-terminal four residues of RcpA bind TadD - an interaction essential for secretin formation. The binding mechanism between RcpA and TadD appears distinct from known secretin-pilotin pairings in other secretion systems.
Collapse
Affiliation(s)
- Matteo Tassinari
- Department of Infectious Disease, Imperial College, London, SW7 2AZ, UK
- Human Technopole, Milan, Italy
| | - Marta Rudzite
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Alain Filloux
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Law SR, Kellgren TG, Björk R, Ryden P, Keech O. Centralization Within Sub-Experiments Enhances the Biological Relevance of Gene Co-expression Networks: A Plant Mitochondrial Case Study. FRONTIERS IN PLANT SCIENCE 2020; 11:524. [PMID: 32582224 PMCID: PMC7287149 DOI: 10.3389/fpls.2020.00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/07/2020] [Indexed: 05/07/2023]
Abstract
UNLABELLED Gene co-expression networks (GCNs) can be prepared using a variety of mathematical approaches based on data sampled across diverse developmental processes, tissue types, pathologies, mutant backgrounds, and stress conditions. These networks are used to identify genes with similar expression dynamics but are prone to introducing false-positive and false-negative relationships, especially in the instance of large and heterogenous datasets. With the aim of optimizing the relevance of edges in GCNs and enhancing global biological insight, we propose a novel approach that involves a data-centering step performed simultaneously per gene and per sub-experiment, called centralization within sub-experiments (CSE). Using a gene set encoding the plant mitochondrial proteome as a case study, our results show that all CSE-based GCNs assessed had significantly more edges within the majority of the considered functional sub-networks, such as the mitochondrial electron transport chain and its complexes, than GCNs not using CSE; thus demonstrating that CSE-based GCNs are efficient at predicting canonical functions and associated pathways, here referred to as the core gene network. Furthermore, we show that correlation analyses using CSE-processed data can be used to fine-tune prediction of the function of uncharacterized genes; while its use in combination with analyses based on non-CSE data can augment conventional stress analyses with the innate connections underpinning the dynamic system being examined. Therefore, CSE is an effective alternative method to conventional batch correction approaches, particularly when dealing with large and heterogenous datasets. The method is easy to implement into a pre-existing GCN analysis pipeline and can provide enhanced biological relevance to conventional GCNs by allowing users to delineate a core gene network. AUTHOR SUMMARY Gene co-expression networks (GCNs) are the product of a variety of mathematical approaches that identify causal relationships in gene expression dynamics but are prone to the misdiagnoses of false-positives and false-negatives, especially in the instance of large and heterogenous datasets. In light of the burgeoning output of next-generation sequencing projects performed on a variety of species, and developmental or clinical conditions; the statistical power and complexity of these networks will undoubtedly increase, while their biological relevance will be fiercely challenged. Here, we propose a novel approach to generate a "core" GCN with enhanced biological relevance. Our method involves a data-centering step that effectively removes all primary treatment/tissue effects, which is simple to employ and can be easily implemented into pre-existing GCN analysis pipelines. The gain in biological relevance resulting from the adoption of this approach was assessed using a plant mitochondrial case study.
Collapse
Affiliation(s)
- Simon R. Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå Universitet, Umeå, Sweden
| | - Therese G. Kellgren
- Department of Mathematics and Mathematical Statistics, Umeå Universitet, Umeå, Sweden
| | - Rafael Björk
- Department of Mathematics and Mathematical Statistics, Umeå Universitet, Umeå, Sweden
| | - Patrik Ryden
- Department of Mathematics and Mathematical Statistics, Umeå Universitet, Umeå, Sweden
- *Correspondence: Patrik Ryden,
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå Universitet, Umeå, Sweden
- Olivier Keech,
| |
Collapse
|
3
|
Davidov G, Müller FD, Baumgartner J, Bitton R, Faivre D, Schüler D, Zarivach R. Crystal structure of the magnetobacterial protein MtxA C-terminal domain reveals a new sequence-structure relationship. Front Mol Biosci 2015; 2:25. [PMID: 26052516 PMCID: PMC4439547 DOI: 10.3389/fmolb.2015.00025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/04/2015] [Indexed: 01/07/2023] Open
Abstract
Magnetotactic bacteria (MTB) are a diverse group of aquatic bacteria that have the magnetotaxis ability to align themselves along the geomagnetic field lines and to navigate to a microoxic zone at the bottom of chemically stratified natural water. This special navigation is the result of a unique linear assembly of a specialized organelle, the magnetosome, which contains a biomineralized magnetic nanocrystal enveloped by a cytoplasmic membrane. The Magnetospirillum gryphiswaldense MtxA protein (MGR_0208) was suggested to play a role in bacterial magnetotaxis due to its gene location in an operon together with putative signal transduction genes. Since no homology is found for MtxA, and to better understand the role and function of MtxA in MTBés magnetotaxis, we initiated structural and functional studies of MtxA via X-ray crystallography and deletion mutagenesis. Here, we present the crystal structure of the MtxA C-terminal domain and provide new insights into its sequence-structure relationship.
Collapse
Affiliation(s)
- Geula Davidov
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel
| | - Frank D. Müller
- Department of Microbiology, University of BayreuthBayreuth, Germany
| | - Jens Baumgartner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces (MPI)Potsdam, Germany
| | - Ronit Bitton
- Department of Chemical Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the NegevBeer-Sheva, Israel
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces (MPI)Potsdam, Germany
| | - Dirk Schüler
- Department of Microbiology, University of BayreuthBayreuth, Germany
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the NegevBeer Sheva, Israel,*Correspondence: Raz Zarivach, Department of Life Sciences, Ben Gurion University of the Negev, PO Box. 653, Beer-Sheva 84105, Israel
| |
Collapse
|
4
|
Zeytuni N, Zarivach R. Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure 2012; 20:397-405. [PMID: 22404999 DOI: 10.1016/j.str.2012.01.006] [Citation(s) in RCA: 244] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 01/14/2023]
Abstract
Tetra-trico-peptide repeat (TPR) domains are found in numerous proteins, where they serve as interaction modules and multiprotein complex mediators. TPRs can be found in all kingdoms of life and regulate diverse biological processes, such as organelle targeting and protein import, vesicle fusion, and biomineralization. This review considers the structural features of TPR domains that permit the great ligand-binding diversity of this motif, given that TPR-interacting partners display variations in both sequence and secondary structure. In addition, tools for predicting TPR-interacting partners are discussed, as are the abilities of TPR domains to serve as protein-protein interaction scaffolds in biotechnology and therapeutics.
Collapse
Affiliation(s)
- Natalie Zeytuni
- Department of Life Sciences, Ben-Gurion University of the Negev and National Institute for Biotechnology in the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | | |
Collapse
|
5
|
Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proc Natl Acad Sci U S A 2011; 108:E480-7. [PMID: 21784982 DOI: 10.1073/pnas.1103367108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The magnetosome, a biomineralizing organelle within magnetotactic bacteria, allows their navigation along geomagnetic fields. Magnetosomes are membrane-bound compartments containing magnetic nanoparticles and organized into a chain within the cell, the assembly and biomineralization of magnetosomes are controlled by magnetosome-associated proteins. Here, we describe the crystal structures of the magnetosome-associated protein, MamA, from Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. MamA folds as a sequential tetra-trico-peptide repeat (TPR) protein with a unique hook-like shape. Analysis of the MamA structures indicates two distinct domains that can undergo conformational changes. Furthermore, structural analysis of seven crystal forms verified that the core of MamA is not affected by crystallization conditions and identified three protein-protein interaction sites, namely a concave site, a convex site, and a putative TPR repeat. Additionally, relying on transmission electron microscopy and size exclusion chromatography, we show that highly stable complexes form upon MamA homooligomerization. Disruption of the MamA putative TPR motif or N-terminal domain led to protein mislocalization in vivo and prevented MamA oligomerization in vitro. We, therefore, propose that MamA self-assembles through its putative TPR motif and its concave site to create a large homooligomeric scaffold which can interact with other magnetosome-associated proteins via the MamA convex site. We discuss the structural basis for TPR homooligomerization that allows the proper function of a prokaryotic organelle.
Collapse
|
6
|
Zeytuni N, Zarivach R. Crystallization and preliminary crystallographic analysis of the Magnetospirillum magneticum AMB-1 and M. gryphiswaldense MSR-1 magnetosome-associated proteins MamA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:824-7. [PMID: 20606283 PMCID: PMC2898471 DOI: 10.1107/s1744309110018300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 05/17/2010] [Indexed: 11/11/2022]
Abstract
MamA is a unique magnetosome-associated protein that is predicted to contain six sequential tetratricopeptide-repeat (TPR) motifs. The TPR structural motif serves as a template for protein-protein interactions and mediates the assembly of multi-protein complexes. Here, the crystallization and preliminary X-ray analysis of recombinant and purified Magnetospirillum magneticum and M. gryphiswaldense MamA are reported for the first time. M. gryphiswaldense MamADelta41 crystallized in the tetragonal space group P4(1)2(1)2 or P4(3)2(1)2, with unit-cell parameters a = b = 58.88, c = 144.09 A. M. magneticum MamADelta41 crystallized in the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 44.75, b = 76.19, c = 105.05 A. X-ray diffraction data were collected to resolutions of 2.0 and 1.95 A, respectively.
Collapse
Affiliation(s)
- Natalie Zeytuni
- Department of Life Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel
| | - Raz Zarivach
- Department of Life Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
7
|
IpaB-IpgC interaction defines binding motif for type III secretion translocator. Proc Natl Acad Sci U S A 2009; 106:9661-6. [PMID: 19478065 DOI: 10.1073/pnas.0812900106] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The delivery of virulence factors into host cells through type III secretion systems is essential for enterobacterial pathogenesis. Molecular chaperones bind specifically to virulence factors in the bacterial cytosol before secretion. Invasion plasmid gene C (IpgC) is a chaperone that binds 2 essential virulence factors of Shigella: invasion plasmid antigens (Ipa) B and C. Here, we report the crystal structure of IpgC alone and in complex with the chaperone binding domain (CBD) of IpaB. The chaperone captures the CBD in an extended conformation that is stabilized by conserved residues lining the cleft. Analysis of the cocrystal structure reveals a sequence motif that is functional in the IpaB translocator class from different bacteria as determined by isothermal titration calorimetry. Our results show how translocators are chaperoned and may allow the design of inhibitors of enterobacterial diseases.
Collapse
|
8
|
Liu Q, Gao J, Chen X, Chen Y, Chen J, Wang S, Liu J, Liu X, Li J. HBP21: a novel member of TPR motif family, as a potential chaperone of heat shock protein 70 in proliferative vitreoretinopathy (PVR) and breast cancer. Mol Biotechnol 2008; 40:231-40. [PMID: 18587674 DOI: 10.1007/s12033-008-9080-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 06/11/2008] [Indexed: 11/25/2022]
Abstract
A large number of tetratricopeptide repeat (TPR)-containing proteins have been shown to interact with the C-terminal domain of the 70 kDa heat-shock protein (Hsp70), especially those with three consecutive TPR motifs. The TPR motifs in these proteins are necessary and sufficient for mediating the interaction with Hsp70. Here, we investigate HBP21, a novel human protein of unknown function having three tandem TPR motifs predicted by computational sequence analysis. We confirmed the high expression of HBP21 in breast cancer and proliferative vitreoretinopathy (PVR) proliferative membrane and examined whether HBP21 could interact with Hsp70 using a yeast two-hybrid system and glutathione S-transferase pull-down assay. Previous studies have demonstrated the importance of Hsp70 C-terminal residues EEVD and PTIEEVD for interaction with TPR-containing proteins. Here, we tested an assortment of truncation and amino acid substitution mutants of Hsp70 to determine their ability to bind to HBP21 using a yeast two-hybrid system. The newly discovered interaction between HBP21 and Hsp70 along with observations from other studies leads to our hypothesis that HBP21 may be involved in the inhibition of progression and metastasis of tumor cells.
Collapse
Affiliation(s)
- Qinghuai Liu
- Lab of Reproductive Medicine, Department of Cell Biology and Medical Genetics, Nanjing Medical University, 140 Han Zhong Road, Nanjing, Jiangsu 210029, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|