1
|
Mars JC, Ghram M, Culjkovic-Kraljacic B, Borden KLB. The Cap-Binding Complex CBC and the Eukaryotic Translation Factor eIF4E: Co-Conspirators in Cap-Dependent RNA Maturation and Translation. Cancers (Basel) 2021; 13:6185. [PMID: 34944805 PMCID: PMC8699206 DOI: 10.3390/cancers13246185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
The translation of RNA into protein is a dynamic process which is heavily regulated during normal cell physiology and can be dysregulated in human malignancies. Its dysregulation can impact selected groups of RNAs, modifying protein levels independently of transcription. Integral to their suitability for translation, RNAs undergo a series of maturation steps including the addition of the m7G cap on the 5' end of RNAs, splicing, as well as cleavage and polyadenylation (CPA). Importantly, each of these steps can be coopted to modify the transcript signal. Factors that bind the m7G cap escort these RNAs through different steps of maturation and thus govern the physical nature of the final transcript product presented to the translation machinery. Here, we describe these steps and how the major m7G cap-binding factors in mammalian cells, the cap binding complex (CBC) and the eukaryotic translation initiation factor eIF4E, are positioned to chaperone transcripts through RNA maturation, nuclear export, and translation in a transcript-specific manner. To conceptualize a framework for the flow and integration of this genetic information, we discuss RNA maturation models and how these integrate with translation. Finally, we discuss how these processes can be coopted by cancer cells and means to target these in malignancy.
Collapse
Affiliation(s)
- Jean-Clement Mars
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Mehdi Ghram
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillion Marcelle-Coutu, Chemin Polytechnique, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
2
|
Park Y, Park J, Hwang HJ, Kim L, Jeong K, Song HK, Rufener SC, Mühlemann O, Kim YK. Translation mediated by the nuclear cap-binding complex is confined to the perinuclear region via a CTIF-DDX19B interaction. Nucleic Acids Res 2021; 49:8261-8276. [PMID: 34232997 PMCID: PMC8373075 DOI: 10.1093/nar/gkab579] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022] Open
Abstract
Newly synthesized mRNA is translated during its export through the nuclear pore complex, when its 5′-cap structure is still bound by the nuclear cap-binding complex (CBC), a heterodimer of cap-binding protein (CBP) 80 and CBP20. Despite its critical role in mRNA surveillance, the mechanism by which CBC-dependent translation (CT) is regulated remains unknown. Here, we demonstrate that the CT initiation factor (CTIF) is tethered in a translationally incompetent manner to the perinuclear region by the DEAD-box helicase 19B (DDX19B). DDX19B hands over CTIF to CBP80, which is associated with the 5′-cap of a newly exported mRNA. The resulting CBP80–CTIF complex then initiates CT in the perinuclear region. We also show that impeding the interaction between CTIF and DDX19B leads to uncontrolled CT throughout the cytosol, consequently dysregulating nonsense-mediated mRNA decay. Altogether, our data provide molecular evidence supporting the importance of tight control of local translation in the perinuclear region.
Collapse
Affiliation(s)
- Yeonkyoung Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Joori Park
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Jung Hwang
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Leehyeon Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Kwon Jeong
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Kyu Song
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Simone C Rufener
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841, Republic of Korea.,Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Abstract
In mammals, cap-dependent translation of mRNAs is initiated by two distinct mechanisms: cap-binding complex (CBC; a heterodimer of CBP80 and 20)-dependent translation (CT) and eIF4E-dependent translation (ET). Both translation initiation mechanisms share common features in driving cap-dependent translation; nevertheless, they can be distinguished from each other based on their molecular features and biological roles. CT is largely associated with mRNA surveillance such as nonsense-mediated mRNA decay (NMD), whereas ET is predominantly involved in the bulk of protein synthesis. However, several recent studies have demonstrated that CT and ET have similar roles in protein synthesis and mRNA surveillance. In a subset of mRNAs, CT preferentially drives the cap-dependent translation, as ET does, and ET is responsible for mRNA surveillance, as CT does. In this review, we summarize and compare the molecular features of CT and ET with a focus on the emerging roles of CT in translation.
Collapse
Affiliation(s)
- Incheol Ryu
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841,
Korea
- School of Life Sciences, Korea University, Seoul 02841,
Korea
| | - Yoon Ki Kim
- Creative Research Initiatives Center for Molecular Biology of Translation, Korea University, Seoul 02841,
Korea
- School of Life Sciences, Korea University, Seoul 02841,
Korea
- Corresponding author. Tel: +82-2-3290-3410; Fax: +82-2-923-9923; E-mail:
| |
Collapse
|
4
|
Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol Cell 2016; 62:335-345. [PMID: 27117702 DOI: 10.1016/j.molcel.2016.03.021] [Citation(s) in RCA: 1175] [Impact Index Per Article: 130.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/13/2016] [Accepted: 03/17/2016] [Indexed: 12/13/2022]
Abstract
METTL3 is an RNA methyltransferase implicated in mRNA biogenesis, decay, and translation control through N(6)-methyladenosine (m(6)A) modification. Here we find that METTL3 promotes translation of certain mRNAs including epidermal growth factor receptor (EGFR) and the Hippo pathway effector TAZ in human cancer cells. In contrast to current models that invoke m(6)A reader proteins downstream of nuclear METTL3, we find METTL3 associates with ribosomes and promotes translation in the cytoplasm. METTL3 depletion inhibits translation, and both wild-type and catalytically inactive METTL3 promote translation when tethered to a reporter mRNA. Mechanistically, METTL3 enhances mRNA translation through an interaction with the translation initiation machinery. METTL3 expression is elevated in lung adenocarcinoma and using both loss- and gain-of-function studies, we find that METTL3 promotes growth, survival, and invasion of human lung cancer cells. Our results uncover an important role of METTL3 in promoting translation of oncogenes in human lung cancer.
Collapse
Affiliation(s)
- Shuibin Lin
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Junho Choe
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Du
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Robinson Triboulet
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
5
|
Park J, Ahn S, Jayabalan AK, Ohn T, Koh HC, Hwang J. Insulin Signaling Augments eIF4E-Dependent Nonsense-Mediated mRNA Decay in Mammalian Cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:896-905. [PMID: 26708722 DOI: 10.1016/j.bbagrm.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) modulates the level of mRNA harboring a premature termination codon (PTC) in a translation-dependent manner. Inhibition of translation is known to impair NMD; however, few studies have investigated the correlation between enhanced translation and increased NMD. Here, we demonstrate that insulin signaling events increase translation, leading to an increase in NMD of eIF4E-bound transcripts. We provide evidence that (i) insulin-mediated enhancement of translation augments NMD and rapamycin abrogates this enhancement; (ii) an increase in AKT phosphorylation due to inhibition of PTEN facilitates NMD; (iii) insulin stimulation increases the binding of up-frameshift factor 1 (UPF1), most likely to eIF4E-bound PTC-containing transcripts; and (iv) insulin stimulation induces the colocalization of UPF1 and eIF4E in processing bodies. These results illustrate how extracellular signaling promotes the removal of eIF4E-bound NMD targets.
Collapse
Affiliation(s)
- Jungyun Park
- Graduate School for Biomedical Science & Engineering, FTC1202-8, Hanyang University, 222 Wangimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Seyoung Ahn
- Graduate School for Biomedical Science & Engineering, FTC1202-8, Hanyang University, 222 Wangimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Aravinth K Jayabalan
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Takbum Ohn
- Department of Cellular and Molecular Medicine, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Hyun Chul Koh
- Department of Pharmacology, College of Medicine, Hanyang University, 222 Wangimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| | - Jungwook Hwang
- Graduate School for Biomedical Science & Engineering, FTC1202-8, Hanyang University, 222 Wangimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Department of Medical Genetics, College of Medicine, FTC1202-8, Hanyang University, 222 Wangimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
6
|
Yan J, Zhou H, Kong L, Zhang J, Zhao Q, Li Y. Identification of two novel inhibitors of mTOR signaling pathway based on high content screening. Cancer Chemother Pharmacol 2013; 72:799-808. [DOI: 10.1007/s00280-013-2255-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/26/2013] [Indexed: 12/21/2022]
|
7
|
Rufener SC, Mühlemann O. eIF4E-bound mRNPs are substrates for nonsense-mediated mRNA decay in mammalian cells. Nat Struct Mol Biol 2013; 20:710-7. [PMID: 23665581 DOI: 10.1038/nsmb.2576] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/04/2013] [Indexed: 12/27/2022]
|
8
|
Terenin IM, Andreev DE, Dmitriev SE, Shatsky IN. A novel mechanism of eukaryotic translation initiation that is neither m7G-cap-, nor IRES-dependent. Nucleic Acids Res 2012; 41:1807-16. [PMID: 23268449 PMCID: PMC3561988 DOI: 10.1093/nar/gks1282] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Resistance of translation of some eukaryotic messenger RNAs (mRNAs) to inactivation of the cap-binding factor eIF4E under unfavorable conditions is well documented. To date, it is the mechanism of internal ribosome entry that is predominantly thought to underlay this stress tolerance. However, many cellular mRNAs that had been considered to contain internal ribosome entry sites (IRESs) failed to pass stringent control tests for internal initiation, thus raising the question of how they are translated under stress conditions. Here, we show that inserting an eIF4G-binding element from a virus IRES into 5′-UTRs of strongly cap-dependent mRNAs dramatically reduces their requirement for the 5′-terminal m7G-cap, though such cap-independent translation remains dependent on a vacant 5′-terminus of these mRNAs. Importantly, direct binding of eIF4G to the 5′-UTR of mRNA makes its translation resistant to eIF4F inactivation both in vitro and in vivo. These data may substantiate a new paradigm of translational control under stress to complement IRES-driven mechanism of translation.
Collapse
Affiliation(s)
- Ilya M Terenin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119234, Russia.
| | | | | | | |
Collapse
|
9
|
Choe J, Oh N, Park S, Lee YK, Song OK, Locker N, Chi SG, Kim YK. Translation initiation on mRNAs bound by nuclear cap-binding protein complex CBP80/20 requires interaction between CBP80/20-dependent translation initiation factor and eukaryotic translation initiation factor 3g. J Biol Chem 2012; 287:18500-9. [PMID: 22493286 DOI: 10.1074/jbc.m111.327528] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the cytoplasm of mammalian cells, either cap-binding proteins 80 and 20 (CBP80/20) or eukaryotic translation initiation factor (eIF) 4E can direct the initiation of translation. Although the recruitment of ribosomes to mRNAs during eIF4E-dependent translation (ET) is well characterized, the molecular mechanism for CBP80/20-dependent translation (CT) remains obscure. Here, we show that CBP80/20-dependent translation initiation factor (CTIF), which has been shown to be preferentially involved in CT but not ET, specifically interacts with eIF3g, a component of the eIF3 complex involved in ribosome recruitment. By interacting with eIF3g, CTIF serves as an adaptor protein to bridge the CBP80/20 and the eIF3 complex, leading to efficient ribosome recruitment during CT. Accordingly, down-regulation of CTIF using a small interfering RNA causes a redistribution of CBP80 from polysome fractions to subpolysome fractions, without significant consequence to eIF4E distribution. In addition, down-regulation of eIF3g inhibits the efficiency of nonsense-mediated mRNA decay, which is tightly coupled to CT but not to ET. Moreover, the artificial tethering of CTIF to an intercistronic region of dicistronic mRNA results in translation of the downstream cistron in an eIF3-dependent manner. These findings support the idea that CT mechanistically differs from ET.
Collapse
Affiliation(s)
- Junho Choe
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Garre E, Romero-Santacreu L, De Clercq N, Blasco-Angulo N, Sunnerhagen P, Alepuz P. Yeast mRNA cap-binding protein Cbc1/Sto1 is necessary for the rapid reprogramming of translation after hyperosmotic shock. Mol Biol Cell 2011; 23:137-50. [PMID: 22072789 PMCID: PMC3248893 DOI: 10.1091/mbc.e11-05-0419] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Global translation is inhibited in Saccharomyces cerevisiae cells under osmotic stress; nonetheless, osmostress-protective proteins are synthesized. We found that translation mediated by the mRNA cap-binding protein Cbc1 is stress-resistant and necessary for the rapid translation of osmostress-protective proteins under osmotic stress. In response to osmotic stress, global translation is inhibited, but the mRNAs encoding stress-protective proteins are selectively translated to allow cell survival. To date, the mechanisms and factors involved in the specific translation of osmostress-responsive genes in Saccharomyces cerevisiae are unknown. We find that the mRNA cap-binding protein Cbc1 is important for yeast survival under osmotic stress. Our results provide new evidence supporting a role of Cbc1 in translation initiation. Cbc1 associates with polysomes, while the deletion of the CBC1 gene causes hypersensitivity to the translation inhibitor cycloheximide and yields synthetic “sickness” in cells with limiting amounts of translation initiator factor eIF4E. In cbc1Δ mutants, translation drops sharply under osmotic stress, the subsequent reinitiation of translation is retarded, and “processing bodies” containing untranslating mRNAs remain for long periods. Furthermore, osmostress-responsive mRNAs are transcriptionally induced after osmotic stress in cbc1Δ cells, but their rapid association with polysomes is delayed. However, in cells containing a thermosensitive eIF4E allele, their inability to grow at 37ºC is suppressed by hyperosmosis, and Cbc1 relocalizes from nucleus to cytoplasm. These data support a model in which eIF4E-translation could be stress-sensitive, while Cbc1-mediated translation is necessary for the rapid translation of osmostress-protective proteins under osmotic stress.
Collapse
Affiliation(s)
- Elena Garre
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
In mammalian cells, newly synthesized mRNAs undergo a pioneer round of translation that is important for mRNA quality control. Following maturation of messenger ribonucleoprotein particles during and after the pioneer round, steady-state cycles of mRNA translation generate most of the cell's proteins. Translation factors, RNA-binding proteins, and targets of signaling pathways that are particular to newly synthesized mRNAs regulate critical functions of the pioneer round.
Collapse
Affiliation(s)
- Lynne E Maquat
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
12
|
Livingstone M, Larsson O, Sukarieh R, Pelletier J, Sonenberg N. A chemical genetic screen for mTOR pathway inhibitors based on 4E-BP-dependent nuclear accumulation of eIF4E. ACTA ACUST UNITED AC 2010; 16:1240-9. [PMID: 20064434 DOI: 10.1016/j.chembiol.2009.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/20/2009] [Accepted: 11/13/2009] [Indexed: 12/31/2022]
Abstract
The signal transduction pathway wherein mTOR regulates cellular growth and proliferation is an active target for drug discovery. The search for new mTOR inhibitors has recently yielded a handful of promising compounds that hold therapeutic potential. This search has been limited by the lack of a high-throughput assay to monitor the phosphorylation of a direct rapamycin-sensitive mTOR substrate in cells. Here we describe a novel cell-based chemical genetic screen useful for efficiently monitoring mTOR signaling to 4E-BPs in response to stimuli. The screen is based on the nuclear accumulation of eIF4E, which occurs in a 4E-BP-dependent manner specifically upon inhibition of mTOR signaling. Using this assay in a small-scale screen, we have identified several compounds not previously known to inhibit mTOR signaling, demonstrating that this method can be adapted to larger screens.
Collapse
Affiliation(s)
- Mark Livingstone
- Department of Biochemistry and McGill Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | | | | | | | | |
Collapse
|
13
|
Sato H, Maquat LE. Remodeling of the pioneer translation initiation complex involves translation and the karyopherin importin beta. Genes Dev 2009; 23:2537-50. [PMID: 19884259 DOI: 10.1101/gad.1817109] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian mRNAs lose and acquire proteins throughout their life span while undergoing processing, transport, translation, and decay. How translation affects messenger RNA (mRNA)-protein interactions is largely unknown. The pioneer round of translation uses newly synthesized mRNA that is bound by cap-binding protein 80 (CBP80)-CBP20 (also known as the cap-binding complex [CBC]) at the cap, poly(A)-binding protein N1 (PABPN1) and PABPC1 at the poly(A) tail, and, provided biogenesis involves pre-mRNA splicing, exon junction complexes (EJCs) at exon-exon junctions. Subsequent rounds of translation engage mRNA that is bound by eukaryotic translation initiation factor 4E (eIF4E) at the cap and PABPC1 at the poly(A) tail, but that lacks detectable EJCs and PABPN1. Using the level of intracellular iron to regulate the translation of specific mRNAs, we show that translation promotes not only removal of EJC constituents, including the eIF4AIII anchor, but also replacement of PABPN1 by PABPC1. Remarkably, translation does not affect replacement of CBC by eIF4E. Instead, replacement of CBC by eIF4E is promoted by importin beta (IMPbeta): Inhibiting the binding of IMPbeta to the complex of CBC-IMPalpha at an mRNA cap using the IMPalpha IBB (IMPbeta-binding) domain or a RAN variant increases the amount of CBC-bound mRNA and decreases the amount of eIF4E-bound mRNA. Our studies uncover a previously unappreciated role for IMPbeta and a novel paradigm for how newly synthesized messenger ribonucleoproteins (mRNPs) are matured.
Collapse
Affiliation(s)
- Hanae Sato
- Department of Biochemistry and Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
14
|
A new MIF4G domain-containing protein, CTIF, directs nuclear cap-binding protein CBP80/20-dependent translation. Genes Dev 2009; 23:2033-45. [PMID: 19648179 DOI: 10.1101/gad.1823409] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During or right after mRNA export via the nuclear pore complex (NPC) in mammalian cells, mRNAs undergo translation mediated by nuclear cap-binding proteins 80 and 20 (CBP80/20). After CBP80/20-dependent translation, CBP80/20 is replaced by cytoplasmic cap-binding protein eIF4E, which directs steady-state translation. Nonsense-mediated mRNA decay (NMD), one of the best-characterized mRNA surveillance mechanisms, has been shown to occur on CBP80/20-bound mRNAs. However, despite the tight link between CBP80/20-dependent translation and NMD, the underlying molecular mechanism and cellular factors that mediate CBP80/20-dependent translation remain obscure. Here, we identify a new MIF4G domain-containing protein, CTIF (CBP80/20-dependent translation initiation factor). CTIF interacts directly with CBP80 and is part of the CBP80/20-dependent translation initiation complex. Depletion of endogenous CTIF from an in vitro translation system selectively blocks the translation of CBP80-bound mRNAs, while addition of purified CTIF restores it. Accordingly, down-regulation of endogenous CTIF abrogates NMD. Confocal microscopy shows that CTIF is localized to the perinuclear region. Our observations demonstrate the existence of CBP80/20-dependent translation and support the idea that CBP80/20-dependent translation is mechanistically different from steady-state translation through identification of a specific cellular protein, CTIF.
Collapse
|
15
|
Zhu C, Zhao Z, Guo M, Shao H, Qiu H, Wang D, Xu J, Xue L, Li W. The mammalian gene ZNF268 is regulated by hUpf1. BIOCHEMISTRY (MOSCOW) 2008; 73:881-5. [PMID: 18774934 DOI: 10.1134/s0006297908080051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nonsense-mediated mRNA decay (NMD), also called RNA surveillance, is a process that degrades mRNAs with premature translation termination codons. In Saccharomyces cerevisiae, it has also been shown that NMD can regulate gene expression at the transcriptional level. To date, there has been no example where promoters are regulated by the NMD pathway in higher eukaryotes. Taking advantage of our previous research on ZNF268 transcription control, we studied the relationship between the ZNF268 promoter and the NMD pathway. We showed by transient transfection that the ZNF268 promoter activity was influenced by hUpf1, not hSmg6, in HeLa cells. This result was confirmed by the analysis of the steady state mRNA of ZNF268 after depletion of endogenous hUpf1 or hSmg6 in HeLa cells. Direct mutational analysis revealed that the C/EBP site in the promoter region is important for hUpf1 function on ZNF268 promoter. Together our results demonstrated that the mammalian gene ZNF268 is regulated by hUpf1 via its promoter.
Collapse
Affiliation(s)
- Chengang Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hypoxic inhibition of nonsense-mediated RNA decay regulates gene expression and the integrated stress response. Mol Cell Biol 2008; 28:3729-41. [PMID: 18362164 DOI: 10.1128/mcb.02284-07] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) rapidly degrades both mutated mRNAs and nonmutated cellular mRNAs in what is thought to be a constitutive fashion. Here we demonstrate that NMD is inhibited in hypoxic cells and that this inhibition is dependent on phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). eIF2alpha phosphorylation is known to promote translational and transcriptional up-regulation of genes important for the cellular response to stress. We show that the mRNAs of several of these stress-induced genes are NMD targets and that the repression of NMD stabilizes these mRNAs, thus demonstrating that the inhibition of NMD augments the cellular stress response. Furthermore, hypoxia-induced formation of cytoplasmic stress granules is also dependent on eIF2alpha phosphorylation, and components of the NMD pathway are relocalized to these granules in hypoxic cells, providing a potential mechanism for the hypoxic inhibition of NMD. Our demonstration that NMD is inhibited in hypoxic cells reveals that the regulation of NMD can dynamically alter gene expression and also establishes a novel mechanism for hypoxic gene regulation.
Collapse
|
17
|
Lee HC, Cho H, Kim YK. Ectopic expression of eIF4E-transporter triggers the movement of eIF4E into P-bodies, inhibiting steady-state translation but not the pioneer round of translation. Biochem Biophys Res Commun 2008; 369:1160-5. [PMID: 18343217 DOI: 10.1016/j.bbrc.2008.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 03/05/2008] [Indexed: 12/31/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is the best-characterized mRNA surveillance mechanism; this process removes faulty mRNAs harboring premature termination codons (PTCs). NMD targets newly synthesized mRNAs bound by nuclear cap-binding proteins 80/20 (CBP80/20) and exon junction complex (EJC), the former of which is thought to recruit the ribosome to initiate the pioneer round of translation. After completion of the pioneer round of translation, CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E, which mediates steady-state translation in the cytoplasm. Here, we show that overexpression of eIF4E-T preferentially inhibits cap-dependent steady-state translation, but not the pioneer round of translation. We also demonstrate that overexpression of eIF4E-T or Dcp1a triggers the movement of eIF4E into the processing bodies. These results suggest that the pioneer round of translation differs from steady-state translation in terms of ribosome recruitment.
Collapse
Affiliation(s)
- Hyung Chul Lee
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-701, Republic of Korea
| | | | | |
Collapse
|
18
|
Pioneer round of translation mediated by nuclear cap-binding proteins CBP80/20 occurs during prolonged hypoxia. FEBS Lett 2007; 581:5158-64. [PMID: 17942097 DOI: 10.1016/j.febslet.2007.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 09/28/2007] [Accepted: 10/02/2007] [Indexed: 01/23/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of the mRNA surveillance mechanisms, which eliminates aberrant mRNAs harboring premature termination codons. NMD targets only mRNAs bound by the nuclear cap-binding protein complex CBP80/20 which directs the pioneer round of translation. Here we demonstrate that NMD occurs efficiently during prolonged hypoxia in which steady-state translation is drastically inhibited. Accordingly, CBP80 remains in the nucleus, and processing bodies are unaffected with regard to their abundance and number under prolonged hypoxic conditions. These results indicate that mRNAs enter the pioneer round of translation during prolonged hypoxia.
Collapse
|