1
|
de Souza TG, de Lucena Costa B, Holanda CA, Soares Romeiro LA, de Souza W, Benchimol M. Effects of cardanol-based phospholipid analogs on Trichomonas vaginalis. Exp Parasitol 2024; 266:108839. [PMID: 39265884 DOI: 10.1016/j.exppara.2024.108839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Trichomonas vaginalis is a protist parasite of the urogenital tract, responsible for human trichomoniasis, an infection sexually transmitted that affects approximately 156 million people worldwide. This pathology is more evident in females and can cause miscarriages, premature births, and infertility. The disease can also lead to a greater predisposition to HIV infection and cervical and prostate cancer. Metronidazole (MTZ) is a drug that treats human trichomoniasis. The data from studies involving human subjects are limited regarding MTZ use during pregnancy. In addition to the toxicity of the treatment, some isolates have become resistant to MTZ. Therefore, searching for new compounds active for treating trichomoniasis becomes necessary. In the present study, we report results obtained using new phospholipid analogs. Two cardanol-based compounds designated LDT117 and LDT134 were active against T. vaginalis with an IC50 of 4.58 and 10.24 μM, respectively. These compounds were not toxic to epithelial cells in culture. Scanning electron microscopy observations revealed a rounding of the cells, a shortening of the flagella, and protrusions on the surface of drug-treated cells. Transmission electron microscopy of treated cells revealed alterations in the plasma membrane with formations of blebs, protrusions, depressions, and vacuoles with myelin figures and vacuolization in the cytoplasm after incubation. Furthermore, after treatments with the compounds LDT117 and LDT134, the parasites presented a positive reaction for TUNEL, indicating death by a mechanism like apoptosis. Given the results obtained, further in vivo studies using animal experimental models are necessary to validate that these compounds are effective for treating human trichomoniasis.
Collapse
Affiliation(s)
- Tatiana Guinancio de Souza
- Universidade Do Grande Rio, Duque de Caxias, Brazil; Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa Em Medicina de Precisão, Universidade Federal Do Rio de Janeiro, 21941-901, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Brenda de Lucena Costa
- Laboratório de Desenvolvimento de Inovações Terapêuticas, Programa de Pós-Graduação Em Medicina Tropical, Universidade de Brasília, Brasília, Brazil
| | - Cleonice Andrade Holanda
- Laboratório de Desenvolvimento de Inovações Terapêuticas, Programa de Pós-Graduação Em Medicina Tropical, Universidade de Brasília, Brasília, Brazil
| | - Luiz Antonio Soares Romeiro
- Laboratório de Desenvolvimento de Inovações Terapêuticas, Programa de Pós-Graduação Em Medicina Tropical, Universidade de Brasília, Brasília, Brazil
| | - Wanderley de Souza
- Universidade Do Grande Rio, Duque de Caxias, Brazil; Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa Em Medicina de Precisão, Universidade Federal Do Rio de Janeiro, 21941-901, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlene Benchimol
- Universidade Do Grande Rio, Duque de Caxias, Brazil; Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa Em Medicina de Precisão, Universidade Federal Do Rio de Janeiro, 21941-901, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Benchimol M, Gadelha AP, de Souza W. Ultrastructural Alterations of the Human Pathogen Giardia intestinalis after Drug Treatment. Pathogens 2023; 12:810. [PMID: 37375500 DOI: 10.3390/pathogens12060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
This review presents the main cell characteristics altered after in vitro incubation of the parasite with commercial drugs used to treat the disease caused by Giardia intestinalis. This important intestinal parasite primarily causes diarrhea in children. Metronidazole and albendazole are the primary compounds used in therapy against Giardia intestinalis. However, they provoke significant side effects, and some strains have developed resistance to metronidazole. Benzimidazole carbamates, such as albendazole and mebendazole, have shown the best activity against Giardia. Despite their in vitro efficacy, clinical treatment with benzimidazoles has yielded conflicting results, demonstrating lower cure rates. Recently, nitazoxanide has been suggested as an alternative to these drugs. Therefore, to enhance the quality of chemotherapy against this parasite, it is important to invest in developing other compounds that can interfere with key steps of metabolic pathways or cell structures and organelles. For example, Giardia exhibits a unique cell structure called the ventral disc, which is crucial for host adhesion and pathogenicity. Thus, drugs that can disrupt the adhesion process hold promise for future therapy against Giardia. Additionally, this review discusses new drugs and strategies that can be employed, as well as suggestions for developing novel drugs to control the infection caused by this parasite.
Collapse
Affiliation(s)
- Marlene Benchimol
- BIOTRANS-CAXIAS, Universidade do Grande Rio. UNIGRANRIO, Rio de Janeiro 96200-000, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ana Paula Gadelha
- Diretoria de Metrologia Científica, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro 25259-020, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
3
|
Sharma HN, Catrett J, Nwokeocha OD, Boersma M, Miller ME, Napier A, Robertson BK, Abugri DA. Anti-Toxoplasma gondii activity of Trametes versicolor (Turkey tail) mushroom extract. Sci Rep 2023; 13:8667. [PMID: 37248277 DOI: 10.1038/s41598-023-35676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023] Open
Abstract
Toxoplasma gondii (T. gondii) infection continues to rise globally in humans and animals with high socioeconomic and public health challenges. Current medications used against T. gondii infection are limited in efficacy, safety, and affordability. This research was conducted to assess the higher fungi extract effect on T. gondii tachyzoites growth in vitro and possibly decipher its mechanism of action. Furthermore, we evaluated the extract's effect on human foreskin fibroblast viability. The methanol extracts of Turkey tail (TT) mushroom was tested against T. gondii tachyzoites growth using an RH-RFP type I strain that expresses red fluorescent protein throughout culture in a dose-dependent manner using a fluorescent plate reader. Similarly, we tested the effect of the extract on host cell viability. We observed that TT extract inhibited tachyzoites growth with a 50% minimum inhibitory concentration (IC50s), IC50 = 5.98 ± 1.22 µg/mL, and 50% cytotoxic concentration (CC50s), CC50 ≥ 100 µg/mL. It was discovered that TT extract induced strong mitochondria superoxide and reactive oxygen species production and disrupted mitochondria membrane potential in T. gondii tachyzoites. Additionally, scanning electron microscopy depicted that TT extract and pyrimethamine (PY) caused a morphological deformation of tachyzoites in vitro. In conclusion, TT methanol extract made up of phytosterols, bioactive sphingolipids, peptides, phenolic acids, and lactones could be a promising source of new compounds for the future development of anti-Toxoplasma gondii drugs. Extracts were non-cytotoxic, even at higher concentrations.
Collapse
Affiliation(s)
- Homa Nath Sharma
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Microbiology Ph.D. Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Laboratory of Ethnomedicine, Parasitology and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | | | - Ogechi Destiny Nwokeocha
- Department of Chemistry, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, 36088, USA
- The School of Dentistry (SOD) Doctorate of Dentistry Program, Meharry Medical College, Nashville, TN, USA
| | - Melissa Boersma
- Department of Chemistry and Biochemistry, College of Science and Mathematics (COSAM), Auburn University, Auburn, AL, 36849, USA
| | - Michael E Miller
- Auburn University Research Instrumentation Facility, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Audrey Napier
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Microbiology Ph.D. Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Boakai K Robertson
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
- Microbiology Ph.D. Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA
| | - Daniel A Abugri
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
- Microbiology Ph.D. Program, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
- Laboratory of Ethnomedicine, Parasitology and Drug Discovery, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL, 36104, USA.
| |
Collapse
|
4
|
Benchimol M, Gadelha AP, de Souza W. Unusual Cell Structures and Organelles in Giardia intestinalis and Trichomonas vaginalis Are Potential Drug Targets. Microorganisms 2022; 10:2176. [PMID: 36363768 PMCID: PMC9698047 DOI: 10.3390/microorganisms10112176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 09/29/2023] Open
Abstract
This review presents the main cell organelles and structures of two important protist parasites, Giardia intestinalis, and Trichomonas vaginalis; many are unusual and are not found in other eukaryotic cells, thus could be good candidates for new drug targets aimed at improvement of the chemotherapy of diseases caused by these eukaryotic protists. For example, in Giardia, the ventral disc is a specific structure to this parasite and is fundamental for the adhesion and pathogenicity to the host. In Trichomonas, the hydrogenosome, a double membrane-bounded organelle that produces ATP, also can be a good target. Other structures include mitosomes, ribosomes, and proteasomes. Metronidazole is the most frequent compound used to kill many anaerobic organisms, including Giardia and Trichomonas. It enters the cell by passive diffusion and needs to find a highly reductive environment to be reduced to the nitro radicals to be active. However, it provokes several side effects, and some strains present metronidazole resistance. Therefore, to improve the quality of the chemotherapy against parasitic protozoa is important to invest in the development of highly specific compounds that interfere with key steps of essential metabolic pathways or in the functional macromolecular complexes which are most often associated with cell structures and organelles.
Collapse
Affiliation(s)
- Marlene Benchimol
- Laboratorio de Ultraestrutura Celular Hertha Meyer, Centro de Ciêcias da Saúde, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitaria, Rio de Janeiro 96200-000, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ana Paula Gadelha
- Diretoria de Metrologia Aplicada as Ciências da Vida, Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Rio de Janeiro 25250-020, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens e Centro Nacional de Biologia Estrutural e Bioimagens, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- CMABio, Escola Superior de Saúde, Universidade do Estado do Amazonas-UEA, Manaus 69850-000, Brazil
| |
Collapse
|
5
|
Pedra-Rezende Y, Macedo IS, Midlej V, Mariante RM, Menna-Barreto RFS. Different Drugs, Same End: Ultrastructural Hallmarks of Autophagy in Pathogenic Protozoa. Front Microbiol 2022; 13:856686. [PMID: 35422792 PMCID: PMC9002357 DOI: 10.3389/fmicb.2022.856686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 01/18/2023] Open
Abstract
Protozoan parasites interact with a wide variety of organisms ranging from bacteria to humans, representing one of the most common causes of parasitic diseases and an important public health problem affecting hundreds of millions of people worldwide. The current treatment for these parasitic diseases remains unsatisfactory and, in some cases, very limited. Treatment limitations together with the increased resistance of the pathogens represent a challenge for the improvement of the patient’s quality of life. The continuous search for alternative preclinical drugs is mandatory, but the mechanisms of action of several of these compounds have not been described. Electron microscopy is a powerful tool for the identification of drug targets in almost all cellular models. Interestingly, ultrastructural analysis showed that several classes of antiparasitic compounds induced similar autophagic phenotypes in trypanosomatids, trichomonadids, and apicomplexan parasites as well as in Giardia intestinalis and Entamoeba spp. with the presence of an increased number of autophagosomes as well as remarkable endoplasmic reticulum profiles surrounding different organelles. Autophagy is a physiological process of eukaryotes that maintains homeostasis by the self-digestion of nonfunctional organelles and/or macromolecules, limiting redundant and damaged cellular components. Here, we focus on protozoan autophagy to subvert drug effects, discussing its importance for successful chemotherapy.
Collapse
Affiliation(s)
- Yasmin Pedra-Rezende
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Isabela S Macedo
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Rafael M Mariante
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Lalle M, Fiorillo A. The protein 14-3-3: A functionally versatile molecule in Giardia duodenalis. ADVANCES IN PARASITOLOGY 2019; 106:51-103. [PMID: 31630760 DOI: 10.1016/bs.apar.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Giardia duodenalis is a cosmopolitan zoonotic protozoan parasite causing giardiasis, one of the most common diarrhoeal diseases in human and animals. Beyond its public health relevance, Giardia represents a valuable and fascinating model microorganism. The deep-branching phylogenetic position of Giardia, its simple life cycle and its minimalistic genomic and cellular organization provide a unique opportunity to define basal and "ancestral" eukaryotic functions. The eukaryotic 14-3-3 protein family represents a distinct example of phosphoserine/phosphothreonine-binding proteins. The extended network of protein-protein interactions established by 14-3-3 proteins place them at the crossroad of multiple signalling pathways that regulate physiological and pathological cellular processes. Despite the remarkable insight on 14-3-3 protein in different organisms, from yeast to humans, so far little attention was given to the study of this protein in protozoan parasites. However, in the last years, research efforts have provided evidences on unique properties of the single 14-3-3 protein of Giardia and on its association in key aspects of Giardia life cycle. In the first part of this chapter, a general overview of the features commonly shared among 14-3-3 proteins in different organisms (i.e. structure, target recognition, mode of action and regulatory mechanisms) is included. The second part focus on the current knowledge on the biochemistry and biology of the Giardia 14-3-3 protein and on the possibility to use this protein as target to propose new strategies for developing innovative antigiardial therapy.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious Diseases, European Union Reference Laboratory for Parasites, Istituto Superiore di Sanità, Rome, Italy.
| | - Annarita Fiorillo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Matadamas-Martínez F, Castillo R, Hernández-Campos A, Méndez-Cuesta C, de Souza W, Gadelha AP, Nogueda-Torres B, Hernández JM, Yépez-Mulia L. Proteomic and ultrastructural analysis of the effect of a new nitazoxanide-N-methyl-1H-benzimidazole hybrid against Giardia intestinalis. Res Vet Sci 2016; 105:171-9. [DOI: 10.1016/j.rvsc.2016.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/22/2016] [Accepted: 02/05/2016] [Indexed: 01/08/2023]
|
8
|
Brennand A, Gualdrón-López M, Coppens I, Rigden DJ, Ginger ML, Michels PA. Autophagy in parasitic protists: Unique features and drug targets. Mol Biochem Parasitol 2011; 177:83-99. [DOI: 10.1016/j.molbiopara.2011.02.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/30/2011] [Accepted: 02/02/2011] [Indexed: 12/24/2022]
|
9
|
de Andrade Rosa I, Rocha DAS, de Souza W, Urbina JA, Benchimol M. Ultrastructural alterations induced by Δ24(25)-sterol methyltransferase inhibitors on Trichomonas vaginalis. FEMS Microbiol Lett 2010; 315:72-8. [DOI: 10.1111/j.1574-6968.2010.02178.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Martins-Duarte ES, Lemgruber L, Lorente SO, Gros L, Magaraci F, Gilbert IH, de Souza W, Vommaro RC. Evaluation of three novel azasterols against Toxoplasma gondii. Vet Parasitol 2010; 177:157-61. [PMID: 21176865 DOI: 10.1016/j.vetpar.2010.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 11/19/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
Previous studies from our group have demonstrated the high susceptibility of Toxoplasma gondii tachyzoites to the sterol analogues 22,26-azasterol and 24,25-(R,S)-epiminolanosterol. In this work we present data on testing in vitro three novel azasterols as potential agents for the treatment of toxoplasmosis. The three compounds inhibited parasite growth at micromolar concentrations, in a dose-dependent manner. Electron microscopy analysis of intracellular tachyzoites after treatment with the most effective compound showed drastic mitochondrion swelling associated with the appearance of an electron-lucent matrix and disrupted cristae. Parasite lysis also took place. The appearance of electron dense cytoplasmic structures similar to amylopectin granules distributed throughout the parasite suggests that azasterols might be inducing differentiation of those tachyzoites which were not lysed to the bradyzoite stage.
Collapse
Affiliation(s)
- Erica S Martins-Duarte
- Laboratório de Ultraestrutura Celular Herth, Meyer, Instituto de Biofísica Carlos Chagas Filho, UFRJ, CCS, Bloco G, Av. Carlo, Chagas Filho, Cidade Universitária, Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Corrêa G, Vilela R, Menna-Barreto RF, Midlej V, Benchimol M. Cell death induction in Giardia lamblia: Effect of beta-lapachone and starvation. Parasitol Int 2009; 58:424-37. [DOI: 10.1016/j.parint.2009.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 07/28/2009] [Accepted: 08/10/2009] [Indexed: 12/18/2022]
|
12
|
Hu H, Faraldos JA, Coates RM. Scope and mechanism of intramolecular aziridination of cyclopent-3-enyl-methylamines to 1-azatricyclo[2.2.1.0(2,6)]heptanes with lead tetraacetate. J Am Chem Soc 2009; 131:11998-2006. [PMID: 19653649 PMCID: PMC2766562 DOI: 10.1021/ja9044136] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of seven cyclopent-3-en-1-ylmethylamines bearing one, two, or three methyl substituents at the C2, C3, C4, or C(alpha) positions, including the unsubstituted parent, was accessed by ring-closing metatheses of alpha,alpha-diallylacetonitrile (or methallyl variants) and alpha,alpha-diallylacetone followed by hydride reductions or reductive amination, or by Curtius degradations of alpha,alpha-dimethyl- and 2,2,3-trimethylcyclopent-3-enylacetic acids. Oxidation of the primary amines with Pb(OAc)(4) in CH(2)Cl(2), CHCl(3) or benzene in the presence of K(2)CO(3) effected efficient intramolecular aziridinations, in all cases except the alpha-methyl analogue (16), to form the corresponding 1-azatricyclo[2.2.1.0(2,6)]heptanes, including the novel monoterpene analogues, 1-azatricyclene and the 2-azatricyclene enantiomers. The cumulative rate increases of aziridination reactions observed by (1)H NMR spectroscopy in CDCl(3) resulting from the presence of one or two methyl groups on the cyclopentene double bond, in comparison to the rate of the unsubstituted parent amine (1:17.5:>280), indicate a highly electrophilic intermediate as the nitrene donor and a symmetrical aziridine-like transition state. A mechanism is outlined in which the amine displaces an acetate ligand from Pb(OAc)(4) to form a lead(IV) amide intermediate RNHPb(OAc)(3) proposed as the actual aziridinating species.
Collapse
Affiliation(s)
- Huayou Hu
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | |
Collapse
|
13
|
Ishida K, Rodrigues JCF, Ribeiro MD, Vila TVM, de Souza W, Urbina JA, Nakamura CV, Rozental S. Growth inhibition and ultrastructural alterations induced by Delta24(25)-sterol methyltransferase inhibitors in Candida spp. isolates, including non-albicans organisms. BMC Microbiol 2009; 9:74. [PMID: 19379501 PMCID: PMC2679025 DOI: 10.1186/1471-2180-9-74] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 04/20/2009] [Indexed: 11/10/2022] Open
Abstract
Background Although Candida species are commensal microorganisms, they can cause many invasive fungal infections. In addition, antifungal resistance can contribute to failure of treatment. The purpose of this study was to evaluate the antifungal activity of inhibitors of Δ24(25)-sterol methyltransferase (24-SMTI), 20-piperidin-2-yl-5α-pregnan-3β-20(R)-diol (AZA), and 24(R,S),25-epiminolanosterol (EIL), against clinical isolates of Candida spp., analysing the ultrastructural changes. Results AZA and EIL were found to be potent growth inhibitors of Candida spp. isolates. The median MIC50 was 0.5 μg.ml-1 for AZA and 2 μg.ml-1 for EIL, and the MIC90 was 2 μg.ml-1 for both compounds. All strains used in this study were susceptible to amphotericin B; however, some isolates were fluconazole- and itraconazole-resistant. Most of the azole-resistant isolates were Candida non-albicans (CNA) species, but several of them, such as C. guilliermondii, C. zeylanoides, and C. lipolytica, were susceptible to 24-SMTI, indicating a lack of cross-resistance. Reference strain C. krusei (ATCC 6258, FLC-resistant) was consistently susceptible to AZA, although not to EIL. The fungicidal activity of 24-SMTI was particularly high against CNA isolates. Treatment with sub-inhibitory concentrations of AZA and EIL induced several ultrastructural alterations, including changes in the cell-wall shape and thickness, a pronounced disconnection between the cell wall and cytoplasm with an electron-lucent zone between them, mitochondrial swelling, and the presence of electron-dense vacuoles. Fluorescence microscopy analyses indicated an accumulation of lipid bodies and alterations in the cell cycle of the yeasts. The selectivity of 24-SMTI for fungal cells versus mammalian cells was assessed by the sulforhodamine B viability assay. Conclusion Taken together, these results suggest that inhibition of 24-SMT may be a novel approach to control Candida spp. infections, including those caused by azole-resistant strains.
Collapse
Affiliation(s)
- Kelly Ishida
- Laboratório de Biologia Celular de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|