1
|
Hori M, Gokita M, Yasue M, Honda T, Kohama T, Mashimo M, Nakamura H, Murayama T. Down-regulation of ceramide kinase via proteasome and lysosome pathways in PC12 cells by serum withdrawal: Its protection by nerve growth factor and role in exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118714. [PMID: 32246947 DOI: 10.1016/j.bbamcr.2020.118714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 01/17/2023]
Abstract
Ceramide kinase (CerK) phosphorylates ceramide to ceramide-1-phosphate (C1P). CerK is highly expressed in the brain, and its association with the neuronal function has been reported. Previous reports showed that the activity of CerK is regulated by post-translational modifications including phosphorylation, whereas the cellular fate of CerK protein and its role in neuronal functions have not been clearly elucidated. Therefore, we investigated these issues in PC12 cells. Treatment with nerve growth factor (NGF) for 6 h increased the formation of C1P but not CerK mRNA. Knockdown of CerK and overexpression of HA-tagged CerK down- and up-regulated the formation of C1P, respectively. In PC12-CerK-HA cells, serum withdrawal caused ubiquitination of CerK-HA protein and down-regulated both CerK-HA protein and C1P formation within 6 h, and these down-regulations were abolished by co-treatments with NGF or proteasome inhibitors such as MG132 and clasto-lactacystin. Microscopic analysis showed that treatment with the proteasome inhibitors increased CerK-HA in puncture structures, possibly endosomes and/or vesicles, in cells. Treatment with the lysosome inhibitors reduced serum withdrawal-induced down-regulation of CerK-HA protein but not C1P formation. When knockdown or overexpression of CerK was performed, Ca2+-induced release of [3H] noradrenaline was reduced or enhanced, respectively, but neurite extension was not modified. There was a positive correlation between noradrenaline release and formation of C1P and/or CerK-HA levels in NGF- and clasto-lactacystin-treated cells. These results suggest that levels of CerK were down-regulated by the ubiquitin/proteasome and lysosome pathways and the former pathway-sensitive pool of CerK was suggested to be linked with exocytosis in PC12 cells.
Collapse
Affiliation(s)
- Mayuko Hori
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Midori Gokita
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Masataka Yasue
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Takuya Honda
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Takafumi Kohama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan; Research Coordination Group, Research Management Department, DaiichiSankyo RD Novare Co., Ltd., 1016-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Masato Mashimo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
2
|
Effect of CLN3 silencing by RNA interference on the proliferation and apoptosis of human colorectal cancer cells. Biomed Pharmacother 2014; 68:253-8. [DOI: 10.1016/j.biopha.2013.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 12/31/2013] [Indexed: 12/18/2022] Open
|
3
|
Bornancin F. Ceramide kinase: the first decade. Cell Signal 2010; 23:999-1008. [PMID: 21111813 DOI: 10.1016/j.cellsig.2010.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/20/2022]
Abstract
It has been some 20 years since the initial discovery of ceramide 1-phosphate (C1P) and nearly a decade since ceramide kinase (CERK) was cloned. Many studies have shown that C1P is important for membrane biology and for the regulation of membrane-bound proteins, and the CERK enzyme has appeared to be tightly regulated in order to control both ceramide levels and production of C1P. Furthermore, C1P made by CERK has emerged as a genuine signalling entity. However, it represents only part of the C1P pool that is available in the cell, therefore suggesting that alternative unknown C1P-producing mechanisms may also play a role. Recent technological developments for measuring complex sphingolipids in biological samples, together with the availability of Cerk-deficient animals as well as potent CERK inhibitors, have now provided new grounds for investigating C1P biology further. Here, we will review the current understanding of CERK and C1P in terms of biochemistry and functional implications, with particular attention to C1P produced by CERK.
Collapse
Affiliation(s)
- Frédéric Bornancin
- Novartis Institutes for BioMedical Research, CH-4056 Basle, Switzerland.
| |
Collapse
|
4
|
Makiyama T, Nagasaka N, Houjyo Y, Yamaura E, Nakamura H, Koide Y, Nishida A, Murayama T. Newly synthetic ceramide-1-phosphate analogs; their uptake, intracellular localization, and roles as an inhibitor of cytosolic phospholipase A2α and inducer of cell toxicity. Biochem Pharmacol 2010; 80:1396-406. [DOI: 10.1016/j.bcp.2010.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/17/2010] [Accepted: 07/23/2010] [Indexed: 01/21/2023]
|
5
|
Graf C, Rovina P, Bornancin F. A secondary assay for ceramide kinase inhibitors based on cell growth inhibition by short-chain ceramides. Anal Biochem 2008; 384:166-9. [PMID: 18831956 DOI: 10.1016/j.ab.2008.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 08/15/2008] [Accepted: 09/08/2008] [Indexed: 12/30/2022]
Abstract
We recently reported that ectopic expression of ceramide kinase (CerK) in various cell lines increases their sensitivity to cell death induced by the exogenous addition of short-chain (e.g., C2) ceramides (Cer). Here we show that this higher sensitivity results from CerK catalytic activity and production of C2-ceramide 1-phosphate (C2-C1P). If CerK activity is inhibited by the potent inhibitor NVP-231, C2-C1P is not produced and viability returns to control levels. The EC(50) of NVP-231 in this assay is in the low nanomolar range, consistent with the IC(50) determined in activity assays in vitro using purified CerK. NVP-995, a structurally related but inactive compound, does not protect against C2-Cer-induced cell death. This assay is robust and easy to implement and scale up, thereby providing a valuable secondary screen assay for CerK inhibitors.
Collapse
Affiliation(s)
- Christine Graf
- Novartis Institutes for BioMedical Research, A-1235 Vienna, Austria
| | | | | |
Collapse
|