1
|
Programmed expression of pro-apoptotic BMCC1 during apoptosis, triggered by DNA damage in neuroblastoma cells. BMC Cancer 2019; 19:542. [PMID: 31170959 PMCID: PMC6555734 DOI: 10.1186/s12885-019-5772-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/29/2019] [Indexed: 11/10/2022] Open
Abstract
Background The multi-functional BMCC1 (BCH motif-containing molecule at the carboxyl terminal region 1)/PRUNE2 plays a clear role in suppression of tumor activity. In the patients with neuroblastoma (NB), reduced expression of BMCC1 in primary tumor tissues was associated with poor prognosis. By contrast, enforced expression of BMCC1 as well as elevated expression of BMCC1 in response to DNA-damage promotes apoptosis by abrogating Akt-mediated survival pathways. Methods We addressed molecular mechanisms underlying changes in regulation of BMCC1 expression during the process of apoptosis, which was promoted by a DNA-damaging drug Cisplatin (CDDP), in NB-derived cells. Results Elevated expression of BMCC1 was identified as an early response to DNA damage, which is accompanied by phosphorylation of ataxia telangiectasia mutated kinase (ATM) and accumulation of E2F1. Indeed, inhibition of ATM using an ATM inhibitor resulted in a decrease in expression of BMCC1 at mRNA levels. In addition, an E2F-binding sight was required for activation of BMCC1 promoter in response to DNA damage. On the other hand, knockdown of E2F1 yielded abrogated induction of BMCC1 in the cells after treatment with CDDP, suggesting that BMCC1 accumulation was caused by ATM-E2F1-dependent transcription. Finally, we demonstrated that full-length BMCC1 was proteolytically cleaved by apoptosis-activated caspase-9 during advanced stages of apoptosis in SK-N-AS cells. Conclusions In this study, we demonstrated the programmed expression of full-length BMCC1 in human NB cells undergoing DNA damage-induced apoptosis. The elucidation of the molecular mechanisms controlling the regulation of BMCC1 during apoptosis initiated by DNA damage provides useful information for understanding drug resistance of tumor cells and spontaneous regression of NB. Electronic supplementary material The online version of this article (10.1186/s12885-019-5772-4) contains supplementary material, which is available to authorized users.
Collapse
|
2
|
Faridi U, Dhawan SS, Pal S, Gupta S, Shukla AK, Darokar MP, Sharma A, Shasany AK. Repurposing L-Menthol for Systems Medicine and Cancer Therapeutics? L-Menthol Induces Apoptosis through Caspase 10 and by Suppressing HSP90. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:53-64. [PMID: 26760959 DOI: 10.1089/omi.2015.0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The objective of the present study was to repurpose L-menthol, which is frequently used in oral health and topical formulations, for cancer therapeutics. In this article, we argue that monoterpenes such as L-menthol might offer veritable potentials in systems medicine, for example, as cheaper anti-cancer compounds. Other monoterpenes such as limonene, perillyl alcohol, and geraniol have been shown to induce apoptosis in various cancer cell lines, but their mechanisms of action are yet to be completely elucidated. Earlier, we showed that L-menthol modulates tubulin polymerization and apoptosis to inhibit cancer cell proliferation. In the present report, we used an apoptosis-related gene microarray in conjunction with proteomics analyses, as well as in silico interpretations, to study gene expression modulation in human adenocarcinoma Caco-2 cell line in response to L-menthol treatment. The microarray analysis identified caspase 10 as the important initiator caspase, instead of caspase 8. The proteomics analyses showed downregulation of HSP90 protein (also corroborated by its low transcript abundance), which in turn indicated inhibition of AKT-mediated survival pathway, release of pro-apoptotic factor BAD from BAD and BCLxL complex, besides regulation of other factors related to apoptosis. Based on the combined microarray, proteomics, and in silico data, a signaling pathway for L-menthol-induced apoptosis is being presented for the first time here. These data and literature analysis have significant implications for "repurposing" L-menthol beyond oral medicine, and in understanding the mode of action of plant-derived monoterpenes towards development of cheaper anticancer drugs in future.
Collapse
Affiliation(s)
- Uzma Faridi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Sunita S Dhawan
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Shaifali Pal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Sanchita Gupta
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ashutosh K Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Mahendra P Darokar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ashok Sharma
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| | - Ajit K Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants , Lucknow, U.P., India
| |
Collapse
|
3
|
Fanale D, Castiglia M, Bazan V, Russo A. Involvement of Non-coding RNAs in Chemo- and Radioresistance of Colorectal Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 937:207-28. [DOI: 10.1007/978-3-319-42059-2_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 2016; 113:E2001-10. [PMID: 27006500 DOI: 10.1073/pnas.1524900113] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proteases constitute the largest enzyme family, yet their biological roles are obscured by our rudimentary understanding of their cellular substrates. There are 12 human caspases that play crucial roles in inflammation and cell differentiation and drive the terminal stages of cell death. Recent N-terminomics technologies have begun to enumerate the diverse substrates individual caspases can cleave in complex cell lysates. It is clear that many caspases have shared substrates; however, few data exist about the catalytic efficiencies (kcat/KM) of these substrates, which is critical to understanding their true substrate preferences. In this study, we use quantitative MS to determine the catalytic efficiencies for hundreds of natural protease substrates in cellular lysate for two understudied members: caspase-2 and caspase-6. Most substrates are new, and the cleavage rates vary up to 500-fold. We compare the cleavage rates for common substrates with those found for caspase-3, caspase-7, and caspase-8, involved in apoptosis. There is little correlation in catalytic efficiencies among the five caspases, suggesting each has a unique set of preferred substrates, and thus more specialized roles than previously understood. We synthesized peptide substrates on the basis of protein cleavage sites and found similar catalytic efficiencies between the protein and peptide substrates. These data suggest the rates of proteolysis are dominated more by local primary sequence, and less by the tertiary protein fold. Our studies highlight that global quantitative rate analysis for posttranslational modification enzymes in complex milieus for native substrates is critical to better define their functions and relative sequence of events.
Collapse
|
5
|
Akamatsu R, Ishida-Kitagawa N, Aoyama T, Oka C, Kawaichi M. BNIP-2 binds phosphatidylserine, localizes to vesicles, and is transported by kinesin-1. Genes Cells 2014; 20:135-52. [PMID: 25472445 DOI: 10.1111/gtc.12209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 10/19/2014] [Indexed: 11/30/2022]
Abstract
BNIP-2 shows high homology with the Cayman ataxia protein, caytaxin, which functions as a kinesin-1 adapter bridging cargos and kinesin light chains (KLCs). BNIP-2 is known to induce cell shape changes when over-expressed in culture cells, but its physiological functions are mostly unknown. BNIP-2 interacts with KLC through the conserved WED motif in the N-terminal region of BNIP-2. Interaction with KLC and transportation by kinesin-1 are essential for over-expressed BNIP-2 to elongate cells and induce cellular processes. Endogenous BNIP-2 localizes to the Golgi apparatus, early and recycling endosomes and mitochondria, aligned with microtubules, and moves at a speed compatible with kinesin-1 transportation. The CRAL-TRIO domain of BNIP-2 specifically interacts with phosphatidylserine, and the vesicular localization of BNIP-2 requires interaction with this phospholipid. BNIP-2 mutants which do not bind phosphatidylserine do not induce morphological changes in cells. These data show that similar to caytaxin, BNIP-2 is a kinesin-1 adapter involved in vesicular transportation in the cytoplasm and that association with cargos depends on interaction of the CRAL-TRIO domain with membrane phosphatidylserine.
Collapse
Affiliation(s)
- Rie Akamatsu
- Laboratory of Gene Function in Animals, Nara Institute of Science and Technology, 9816-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | | | | | | | | |
Collapse
|
6
|
Van Damme P, Plasman K, Vandemoortele G, Jonckheere V, Maurer-Stroh S, Gevaert K. Importance of extended protease substrate recognition motifs in steering BNIP-2 cleavage by human and mouse granzymes B. BMC BIOCHEMISTRY 2014; 15:21. [PMID: 25208769 PMCID: PMC4169252 DOI: 10.1186/1471-2091-15-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/13/2014] [Indexed: 01/14/2023]
Abstract
Background Previous screening of the substrate repertoires and substrate specificity profiles of granzymes resulted in long substrate lists highly likely containing bystander substrates. Here, a recently developed degradomics technology that allows distinguishing efficiently from less efficiently cleaved substrates was applied to study the degradome of mouse granzyme B (mGrB). Results In vitro kinetic degradome analysis resulted in the identification of 37 mGrB cleavage events, 9 of which could be assigned as efficiently targeted ones. Previously, cleavage at the IEAD75 tetrapeptide motif of Bid was shown to be efficiently and exclusively targeted by human granzyme B (hGrB) and thus not by mGrB. Strikingly, and despite holding an identical P4-P1 human Bid (hBid) cleavage motif, mGrB was shown to efficiently cleave the BCL2/adenovirus E1B 19 kDa protein-interacting protein 2 or BNIP-2 at IEAD28. Like Bid, BNIP-2 represents a pro-apoptotic Bcl-2 protein family member and a potential regulator of GrB induced cell death. Next, in vitro analyses demonstrated the increased efficiency of human and mouse BNIP-2 cleavage by mGrB as compared to hGrB indicative for differing Bid/BNIP-2 substrate traits beyond the P4-P1 IEAD cleavage motif influencing cleavage efficiency. Murinisation of differential primed site residues in hBNIP-2 revealed that, although all contributing, a single mutation at the P3′ position was found to significantly increase the mGrB/hGrB cleavage ratio, whereas mutating the P1′ position from I29 > T yielded a 4-fold increase in mGrB cleavage efficiency. Finally, mutagenesis analyses revealed the composite BNIP-2 precursor patterns to be the result of alternative translation initiation at near-cognate start sites within the 5′ leader sequence (5′UTR) of BNIP-2. Conclusions Despite their high sequence similarity, and previously explained by their distinct tetrapeptide specificities observed, the substrate repertoires of mouse and human granzymes B only partially overlap. Here, we show that the substrate sequence context beyond the P4-P1 positions can influence orthologous granzyme B cleavage efficiencies to an unmatched extent. More specifically, in BNIP-2, the identical and hGrB optimal IEAD tetrapeptide substrate motif is targeted highly efficiently by mGrB, while this tetrapeptide motif is refractory towards mGrB cleavage in Bid.
Collapse
Affiliation(s)
- Petra Van Damme
- Department of Medical Protein Research, VIB, Flanders Interuniversity Institute for Biotechnology, Ghent University, A, Baertsoenkaai 3, B9000 Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
7
|
Pan CQ, Sudol M, Sheetz M, Low BC. Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell Signal 2012; 24:2143-65. [PMID: 22743133 DOI: 10.1016/j.cellsig.2012.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 05/22/2012] [Accepted: 06/16/2012] [Indexed: 01/14/2023]
Abstract
Cells coordinate and integrate various functional modules that control their dynamics, intracellular trafficking, metabolism and gene expression. Such capacity is mediated by specific scaffold proteins that tether multiple components of signaling pathways at plasma membrane, Golgi apparatus, mitochondria, endoplasmic reticulum, nucleus and in more specialized subcellular structures such as focal adhesions, cell-cell junctions, endosomes, vesicles and synapses. Scaffold proteins act as "pacemakers" as well as "placemakers" that regulate the temporal, spatial and kinetic aspects of protein complex assembly by modulating the local concentrations, proximity, subcellular dispositions and biochemical properties of the target proteins through the intricate use of their modular protein domains. These regulatory mechanisms allow them to gate the specificity, integration and crosstalk of different signaling modules. In addition to acting as physical platforms for protein assembly, many professional scaffold proteins can also directly modify the properties of their targets while they themselves can be regulated by post-translational modifications and/or mechanical forces. Furthermore, multiple scaffold proteins can form alliances of higher-order regulatory networks. Here, we highlight the emerging themes of scaffold proteins by analyzing their common and distinctive mechanisms of action and regulation, which underlie their functional plasticity in cell signaling. Understanding these mechanisms in the context of space, time and force should have ramifications for human physiology and for developing new therapeutic approaches to control pathological states and diseases.
Collapse
Affiliation(s)
- Catherine Qiurong Pan
- Cell Signaling and Developmental Biology Laboratory, Department of Biological Sciences, National University of Singapore, Republic of Singapore.
| | | | | | | |
Collapse
|
8
|
Pan CQ, Low BC. Functional plasticity of the BNIP-2 and Cdc42GAP Homology (BCH) domain in cell signaling and cell dynamics. FEBS Lett 2012; 586:2674-91. [DOI: 10.1016/j.febslet.2012.04.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
|
9
|
Gupta AB, Wee LE, Zhou YT, Hortsch M, Low BC. Cross-species analyses identify the BNIP-2 and Cdc42GAP homology (BCH) domain as a distinct functional subclass of the CRAL_TRIO/Sec14 superfamily. PLoS One 2012; 7:e33863. [PMID: 22479462 PMCID: PMC3313917 DOI: 10.1371/journal.pone.0033863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/18/2012] [Indexed: 11/19/2022] Open
Abstract
The CRAL_TRIO protein domain, which is unique to the Sec14 protein superfamily, binds to a diverse set of small lipophilic ligands. Similar domains are found in a range of different proteins including neurofibromatosis type-1, a Ras GTPase-activating Protein (RasGAP) and Rho guanine nucleotide exchange factors (RhoGEFs). Proteins containing this structural protein domain exhibit a low sequence similarity and ligand specificity while maintaining an overall characteristic three-dimensional structure. We have previously demonstrated that the BNIP-2 and Cdc42GAP Homology (BCH) protein domain, which shares a low sequence homology with the CRAL_TRIO domain, can serve as a regulatory scaffold that binds to Rho, RhoGEFs and RhoGAPs to control various cell signalling processes. In this work, we investigate 175 BCH domain-containing proteins from a wide range of different organisms. A phylogenetic analysis with ∼100 CRAL_TRIO and similar domains from eight representative species indicates a clear distinction of BCH-containing proteins as a novel subclass within the CRAL_TRIO/Sec14 superfamily. BCH-containing proteins contain a hallmark sequence motif R(R/K)h(R/K)(R/K)NL(R/K)xhhhhHPs (‘h’ is large and hydrophobic residue and ‘s’ is small and weekly polar residue) and can be further subdivided into three unique subtypes associated with BNIP-2-N, macro- and RhoGAP-type protein domains. A previously unknown group of genes encoding ‘BCH-only’ domains is also identified in plants and arthropod species. Based on an analysis of their gene-structure and their protein domain context we hypothesize that BCH domain-containing genes evolved through gene duplication, intron insertions and domain swapping events. Furthermore, we explore the point of divergence between BCH and CRAL-TRIO proteins in relation to their ability to bind small GTPases, GAPs and GEFs and lipid ligands. Our study suggests a need for a more extensive analysis of previously uncharacterized BCH, ‘BCH-like’ and CRAL_TRIO-containing proteins and their significance in regulating signaling events involving small GTPases.
Collapse
Affiliation(s)
- Anjali Bansal Gupta
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Liang En Wee
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yi Ting Zhou
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Michael Hortsch
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Boon Chuan Low
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
10
|
Li S, Itoh M, Ohta K, Ueda M, Mizuno A, Ohta E, Hida Y, Wang MX, Takeuchi K, Nakagawa T. The expression and localization of Prune2 mRNA in the central nervous system. Neurosci Lett 2011; 503:208-14. [PMID: 21893162 DOI: 10.1016/j.neulet.2011.08.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/28/2011] [Accepted: 08/18/2011] [Indexed: 11/24/2022]
Abstract
A family of Bcl-2/adenovirus E1B 19kDa-interacting proteins (BNIPs) plays critical roles in several cellular processes such as cellular transformation, apoptosis, neuronal differentiation, and synaptic function, which are mediated by the BNIP2 and Cdc42GAP homology (BCH) domain. Prune homolog 2 (Drosophila) (PRUNE2) and its isoforms -C9orf65, BCH motif-containing molecule at the carboxyl terminal region 1 (BMCC1), and BNIP2 Extra Long (BNIPXL) - have been shown to be a susceptibility gene for Alzheimer's disease, a biomarker for leiomyosarcomas, a proapoptotic protein in neuronal cells, and an antagonist of cellular transformation, respectively. However, precise localization of PRUNE2 in the brain remains unclear. Here, we identified the distribution of Prune2 mRNA in the adult mouse brain. Prune2 mRNA is predominantly expressed in the neurons of the cranial nerve motor nuclei and the motor neurons of the spinal cord. The expression in the dorsal root ganglia (DRG) is consistent with the previously described reports. In addition, we observed the expression in another sensory neuron in the mesencephalic trigeminal nucleus. These results suggest that Prune2 may be functional in these restricted brain regions.
Collapse
Affiliation(s)
- Shimo Li
- Department of Neurobiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cayman Ataxia-Related Protein is a Presynapse-Specific Caspase-3 Substrate. Neurochem Res 2011; 36:1304-13. [DOI: 10.1007/s11064-011-0430-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 11/25/2022]
|
12
|
Chai H, Liu M, Tian R, Li X, Tang H. miR-20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines. Acta Biochim Biophys Sin (Shanghai) 2011; 43:217-25. [PMID: 21242194 DOI: 10.1093/abbs/gmq125] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is an important treatment for colorectal adenocarcinoma cancer; however, colorectal adenocarcinoma cells often develop resistance to chemotherapeutic drugs, leading to relapse and poor patient prognosis. The development of drug resistance is often a multifactor process, which involved several genes and cellular mechanisms. microRNAs are endogenous small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the present study, we investigated the possible role of microRNAs in regulating drug sensitivity of colorectal adenocarcinoma cells SW620 and SW480. Using microRNA expression arrays and quantitative reverse transcriptase (RT)-PCR, we found that SW620 cells exhibited elevated miR-20a expression compared with SW480 cells. In addition, these two cell lines displayed different sensitivities to the chemotherapeutic drugs fluorouracil, oxaliplatin, and teniposide. Modulation of miR-20a altered the sensitivity of SW620 and SW480 cells to these drugs; knockdown of miR-20a sensitized SW620 cells to chemotherapeutic agents, whereas overexpression of miR-20a in SW480 cells resulted in chemoresistance. Endogenous BNIP2 mRNA and BNIP2 protein levels were inversely related to miR-20a levels as detected by quantitative RT-PCR and western blot analysis. Fluorescence reporter assays showed a direct interaction between miR-20a and the BNIP2 3'UTR. Taken together, our findings suggested that miR-20a may play a role in colorectal adenocarcinoma cancer cell drug resistance and may be a therapeutic target against chemotherapy drug resistance in colorectal adenocarcinoma.
Collapse
Affiliation(s)
- Huijuan Chai
- Tianjin Life Science Research Center and Basic Medical School, Tianjin Medical University, Tianjin, China
| | | | | | | | | |
Collapse
|
13
|
Nile AH, Bankaitis VA, Grabon A. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. CLINICAL LIPIDOLOGY 2010; 5:867-897. [PMID: 21603057 PMCID: PMC3097519 DOI: 10.2217/clp.10.67] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inositol and phosphoinositide signaling pathways represent major regulatory systems in eukaryotes. The physiological importance of these pathways is amply demonstrated by the variety of diseases that involve derangements in individual steps in inositide and phosphoinositide production and degradation. These diseases include numerous cancers, lipodystrophies and neurological syndromes. Phosphatidylinositol transfer proteins (PITPs) are emerging as fascinating regulators of phosphoinositide metabolism. Recent advances identify PITPs (and PITP-like proteins) to be coincidence detectors, which spatially and temporally coordinate the activities of diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. These insights are providing new ideas regarding mechanisms of inherited mammalian diseases associated with derangements in the activities of PITPs and PITP-like proteins.
Collapse
Affiliation(s)
- Aaron H Nile
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Aby Grabon
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| |
Collapse
|
14
|
Plasman K, Van Damme P, Kaiserman D, Impens F, Demeyer K, Helsens K, Goethals M, Bird PI, Vandekerckhove J, Gevaert K. Probing the efficiency of proteolytic events by positional proteomics. Mol Cell Proteomics 2010; 10:M110.003301. [PMID: 21048194 DOI: 10.1074/mcp.m110.003301] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several mass spectrometry-driven techniques allow to map the substrate repertoires and specificities of proteases. These techniques typically yield long lists of protease substrates and processed sites with (potential) physiological relevance, but in order to understand the primary function of a protease, it is important to discern bystander substrates from critical substrates. Because the former are generally processed with lower efficiency, data on the actual substrate cleavage efficiency could assist in categorizing protease substrates. In this study, quantitative mass spectrometry following metabolic proteome labeling (SILAC), combined with the isolation of N-terminal peptides by Combined Fractional Diagonal Chromatography, was used to monitor fluxes in the concentration of protease-generated neo-N-termini. In our experimental setup, a Jurkat cell lysate was treated with the human serine protease granzyme B (hGrB) for three different incubation periods. The extensive list of human granzyme B substrates previously catalogued by N-terminal Combined Fractional Diagonal Chromatography (1) was then used to assign 101 unique hGrB-specific neo-N-termini in 86 proteins. In this way, we were able to define several sites as getting efficiently cleaved in vitro and consequently recognize potential physiologically more relevant substrates. Among them the well-known hGrB substrate Bid was confirmed as being an efficient hGrB substrate next to several other potential regulators of hGrB induced apoptosis such as Bnip2 and Akap-8. Several of our proteomics results were further confirmed by substrate immunoblotting and by using peptide substrates incubated with human granzyme B.
Collapse
Affiliation(s)
- Kim Plasman
- Department of Medical Protein Research, VIB, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Identification of the BCL2/adenovirus E1B-19K protein-interacting protein 2 (BNIP-2) as a granzyme B target during human natural killer cell-mediated killing. Biochem J 2010; 431:423-31. [PMID: 20704564 DOI: 10.1042/bj20091073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytotoxic lymphocytes eliminate infected cells and tumours via the perforin-mediated delivery of pro-apoptotic serine proteases known as granzymes. Granzyme B triggers apoptosis via the cleavage of a repertoire of cellular proteins, leading to caspase activation and mitochondrial depolarization. A simple bioinformatics strategy identified a candidate granzyme B cleavage site in the widely expressed BNIP-2 (BCL2/adenovirus E1B-19K protein-interacting protein 2). Granzyme B cleaved recombinant BNIP-2 in vitro and endogenous BNIP-2 was cleaved during the NK (natural killer) cell-mediated killing of tumour cells. Cleavage required the site identified in the bioinformatics screen and was caspase-independent. Expression of either full-length BNIP-2 or a truncated molecule mimicking the granzyme B cleaved form was pro-apoptotic and led to the caspase-dependent cleavage of BNIP-2 at a site distinct from granzyme B cleavage. Inhibition of BNIP-2 expression did not affect the susceptibility to NK cell-mediated killing. Furthermore, target cells in which BID (BH3-interacting domain death agonist) expression was inhibited also remained highly susceptible to NK cell-mediated killing, revealing redundancy in the pro-apoptotic response to human cytotoxic lymphocytes. Such redundancy reduces the opportunity for escape from apoptosis induction and maximizes the chances of immune-mediated clearance of infected cells or tumour cells.
Collapse
|
16
|
Potkin SG, Guffanti G, Lakatos A, Turner JA, Kruggel F, Fallon JH, Saykin AJ, Orro A, Lupoli S, Salvi E, Weiner M, Macciardi F. Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer's disease. PLoS One 2009; 4:e6501. [PMID: 19668339 PMCID: PMC2719581 DOI: 10.1371/journal.pone.0006501] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 07/01/2009] [Indexed: 12/21/2022] Open
Abstract
Background With the exception of APOE ε4 allele, the common genetic risk factors for sporadic Alzheimer's Disease (AD) are unknown. Methods and Findings We completed a genome-wide association study on 381 participants in the ADNI (Alzheimer's Disease Neuroimaging Initiative) study. Samples were genotyped using the Illumina Human610-Quad BeadChip. 516,645 unique Single Nucleotide Polymorphisms (SNPs) were included in the analysis following quality control measures. The genotype data and raw genetic data are freely available for download (LONI, http://www.loni.ucla.edu/ADNI/Data/). Two analyses were completed: a standard case-control analysis, and a novel approach using hippocampal atrophy measured on MRI as an objectively defined, quantitative phenotype. A General Linear Model was applied to identify SNPs for which there was an interaction between the genotype and diagnosis on the quantitative trait. The case-control analysis identified APOE and a new risk gene, TOMM40 (translocase of outer mitochondrial membrane 40), at a genome-wide significance level of≤10−6 (10−11 for a haplotype). TOMM40 risk alleles were approximately twice as frequent in AD subjects as controls. The quantitative trait analysis identified 21 genes or chromosomal areas with at least one SNP with a p-value≤10−6, which can be considered potential “new” candidate loci to explore in the etiology of sporadic AD. These candidates included EFNA5, CAND1, MAGI2, ARSB, and PRUNE2, genes involved in the regulation of protein degradation, apoptosis, neuronal loss and neurodevelopment. Thus, we identified common genetic variants associated with the increased risk of developing AD in the ADNI cohort, and present publicly available genome-wide data. Supportive evidence based on case-control studies and biological plausibility by gene annotation is provided. Currently no available sample with both imaging and genetic data is available for replication. Conclusions Using hippocampal atrophy as a quantitative phenotype in a genome-wide scan, we have identified candidate risk genes for sporadic Alzheimer's disease that merit further investigation.
Collapse
Affiliation(s)
- Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Curwin AJ, McMaster CR. Structure and function of the enigmatic Sec14 domain-containing proteins and the etiology of human disease. ACTA ACUST UNITED AC 2008. [DOI: 10.2217/17460875.3.4.399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|