1
|
Wald J, Marlovits TC. Holliday junction branch migration driven by AAA+ ATPase motors. Curr Opin Struct Biol 2023; 82:102650. [PMID: 37604043 DOI: 10.1016/j.sbi.2023.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 08/23/2023]
Abstract
Holliday junctions are key intermediate DNA structures during genetic recombination. One of the first Holliday junction-processing protein complexes to be discovered was the well conserved RuvAB branch migration complex present in bacteria that mediates an ATP-dependent movement of the Holliday junction (branch migration). Although the RuvAB complex served as a paradigm for the processing of the Holliday junction, due to technical limitations the detailed structure and underlying mechanism of the RuvAB branch migration complex has until now remained unclear. Recently, structures of a reconstituted RuvAB complex actively-processing a Holliday junction were resolved using time-resolved cryo-electron microscopy. These structures showed distinct conformational states at different stages of the migration process. These structures made it possible to propose an integrated model for RuvAB Holliday junction branch migration. Furthermore, they revealed unexpected insights into the highly coordinated and regulated mechanisms of the nucleotide cycle powering substrate translocation in the hexameric AAA+ RuvB ATPase. Here, we review these latest advances and describe areas for future research.
Collapse
Affiliation(s)
- Jiri Wald
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany; Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße 85, 22607 Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Thomas C Marlovits
- Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany; Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestraße 85, 22607 Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany.
| |
Collapse
|
2
|
Rish AD, Shen Z, Chen Z, Zhang N, Zheng Q, Fu TM. Molecular mechanisms of Holliday junction branch migration catalyzed by an asymmetric RuvB hexamer. Nat Commun 2023; 14:3549. [PMID: 37322069 PMCID: PMC10272136 DOI: 10.1038/s41467-023-39250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
The Holliday junction (HJ) is a DNA intermediate of homologous recombination, involved in many fundamental physiological processes. RuvB, an ATPase motor protein, drives branch migration of the Holliday junction with a mechanism that had yet to be elucidated. Here we report two cryo-EM structures of RuvB, providing a comprehensive understanding of HJ branch migration. RuvB assembles into a spiral staircase, ring-like hexamer, encircling dsDNA. Four protomers of RuvB contact the DNA backbone with a translocation step size of 2 nucleotides. The variation of nucleotide-binding states in RuvB supports a sequential model for ATP hydrolysis and nucleotide recycling, which occur at separate, singular positions. RuvB's asymmetric assembly also explains the 6:4 stoichiometry between the RuvB/RuvA complex, which coordinates HJ migration in bacteria. Taken together, we provide a mechanistic understanding of HJ branch migration facilitated by RuvB, which may be universally shared by prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
- Anthony D Rish
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Zhangfei Shen
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Zhenhang Chen
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nan Zhang
- Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Qingfei Zheng
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Tian-Min Fu
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- Center for Cancer Metabolism, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Wald J, Fahrenkamp D, Goessweiner-Mohr N, Lugmayr W, Ciccarelli L, Vesper O, Marlovits TC. Mechanism of AAA+ ATPase-mediated RuvAB-Holliday junction branch migration. Nature 2022; 609:630-639. [PMID: 36002576 PMCID: PMC9477746 DOI: 10.1038/s41586-022-05121-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
The Holliday junction is a key intermediate formed during DNA recombination across all kingdoms of life1. In bacteria, the Holliday junction is processed by two homo-hexameric AAA+ ATPase RuvB motors, which assemble together with the RuvA-Holliday junction complex to energize the strand-exchange reaction2. Despite its importance for chromosome maintenance, the structure and mechanism by which this complex facilitates branch migration are unknown. Here, using time-resolved cryo-electron microscopy, we obtained structures of the ATP-hydrolysing RuvAB complex in seven distinct conformational states, captured during assembly and processing of a Holliday junction. Five structures together resolve the complete nucleotide cycle and reveal the spatiotemporal relationship between ATP hydrolysis, nucleotide exchange and context-specific conformational changes in RuvB. Coordinated motions in a converter formed by DNA-disengaged RuvB subunits stimulate hydrolysis and nucleotide exchange. Immobilization of the converter enables RuvB to convert the ATP-contained energy into a lever motion, which generates the pulling force driving the branch migration. We show that RuvB motors rotate together with the DNA substrate, which, together with a progressing nucleotide cycle, forms the mechanistic basis for DNA recombination by continuous branch migration. Together, our data decipher the molecular principles of homologous recombination by the RuvAB complex, elucidate discrete and sequential transition-state intermediates for chemo-mechanical coupling of hexameric AAA+ motors and provide a blueprint for the design of state-specific compounds targeting AAA+ motors.
Collapse
Affiliation(s)
- Jiri Wald
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| | - Dirk Fahrenkamp
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
| | - Nikolaus Goessweiner-Mohr
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- Institute of Biophysics, Johannes Kepler University (JKU), Linz, Austria
| | - Wolfgang Lugmayr
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Luciano Ciccarelli
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- GlaxoSmithKline Vaccines, Siena, Italy
| | - Oliver Vesper
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Thomas C Marlovits
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Centre for Structural Systems Biology, Hamburg, Germany.
- Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
- Institute of Molecular Biotechnology GmbH (IMBA), Austrian Academy of Sciences, Vienna, Austria.
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| |
Collapse
|
4
|
Li L, Chen Z, Ding X, Shan Z, Liu L, Guo J. Deep sequencing analysis of the Kineococcus radiotolerans transcriptome in response to ionizing radiation. Microbiol Res 2014; 170:248-54. [PMID: 25467197 DOI: 10.1016/j.micres.2014.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/07/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
Kineococcus radiotolerans is a gram-positive, radiation-resistant bacterium that was isolated from a radioactive environment. The synergy of several groups of genes is thought to contribute to the radio-resistance of this species of bacteria. Sequencing of the transcriptome, RNA sequencing (RNA-seq), using deep sequencing technology can reveal the genes that are differentially expressed in response to radiation in this bacterial strain. In this study, the transcriptomes of two samples (with and without irradiation treatment) were sequencing by deep sequencing technology. After the bioinformatics process, 143 genes were screened out by the differential expression (DE) analysis. In all 143 differentially expressed genes, 20 genes were annotated to be related to the radio-resistance based on the cluster analysis by the cluster of orthologous groups of proteins (COG) annotation which were validated by the quantitative RT-PCR. The pathway analysis revealed that these 20 validated genes were related to DNA damage repair, including recA, ruvA and ruvB, which were considered to be the key genes in DNA damage repair. This study provides the foundation to investigate the regulatory mechanism of these genes.
Collapse
Affiliation(s)
- Lufeng Li
- College of Life Sciences, Zhejiang Sci-Tech University, No.2 Road, Xiasha, Hangzhou, Zhejiang, PR China.
| | - Zhouwei Chen
- College of Life Sciences, Zhejiang Sci-Tech University, No.2 Road, Xiasha, Hangzhou, Zhejiang, PR China.
| | - Xianfeng Ding
- College of Life Sciences, Zhejiang Sci-Tech University, No.2 Road, Xiasha, Hangzhou, Zhejiang, PR China.
| | - Zhan Shan
- College of Life Sciences, Zhejiang Sci-Tech University, No.2 Road, Xiasha, Hangzhou, Zhejiang, PR China.
| | - Lili Liu
- College of Life Sciences, Zhejiang Sci-Tech University, No.2 Road, Xiasha, Hangzhou, Zhejiang, PR China.
| | - Jiangfeng Guo
- College of Life Sciences, Zhejiang Sci-Tech University, No.2 Road, Xiasha, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
5
|
Abstract
The DNA packaging motors of double-stranded DNA phages are models for analysis of all multi-molecular motors and for analysis of several fundamental aspects of biology, including early evolution, relationship of in vivo to in vitro biochemistry and targets for anti-virals. Work on phage DNA packaging motors both has produced and is producing dualities in the interpretation of data obtained by use of both traditional techniques and the more recently developed procedures of single-molecule analysis. The dualities include (1) reductive vs. accretive evolution, (2) rotation vs. stasis of sub-assemblies of the motor, (3) thermal ratcheting vs. power stroking in generating force, (4) complete motor vs. spark plug role for the packaging ATPase, (5) use of previously isolated vs. new intermediates for analysis of the intermediate states of the motor and (6) a motor with one cycle vs. a motor with two cycles. We provide background for these dualities, some of which are under-emphasized in the literature. We suggest directions for future research.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | | |
Collapse
|
6
|
Badawi M, Giraud I, Vavre F, Grève P, Cordaux R. Signs of neutralization in a redundant gene involved in homologous recombination in Wolbachia endosymbionts. Genome Biol Evol 2014; 6:2654-64. [PMID: 25230723 PMCID: PMC4224334 DOI: 10.1093/gbe/evu207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genomic reduction in bacterial endosymbionts occurs through large genomic deletions and long-term accumulation of mutations. The latter process involves successive steps including gene neutralization, pseudogenization, and gradual erosion until complete loss. Although many examples of pseudogenes at various levels of degradation have been reported, neutralization cases are scarce because of the transient nature of the process. Gene neutralization may occur due to relaxation of selection in nonessential genes, for example, those involved in redundant functions. Here, we report an example of gene neutralization in the homologous recombination (HR) pathway of Wolbachia, a bacterial endosymbiont of arthropods and nematodes. The HR pathway is often depleted in endosymbiont genomes, but it is apparently intact in some Wolbachia strains. Analysis of 12 major HR genes showed that they have been globally under strong purifying selection during the evolution of Wolbachia strains hosted by arthropods, supporting the evolutionary importance of the HR pathway for these Wolbachia genomes. However, we detected signs of recent neutralization of the ruvA gene in a subset of Wolbachia strains, which might be related to an ancestral, clade-specific amino acid change that impaired DNA-binding activity. Strikingly, RuvA is part of the RuvAB complex involved in branch migration, whose function overlaps with the RecG helicase. Although ruvA is experiencing neutralization, recG is under strong purifying selection. Thus, our high phylogenetic resolution suggests that we identified a rare example of targeted neutralization of a gene involved in a redundant function in an endosymbiont genome.
Collapse
Affiliation(s)
- Myriam Badawi
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | - Isabelle Giraud
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | - Fabrice Vavre
- Université de Lyon, UMR CNRS 5558 Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Pierre Grève
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| | - Richard Cordaux
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France
| |
Collapse
|
7
|
Chen SH, Plank JL, Willcox S, Griffith JD, Hsieh TS. Top3α is required during the convergent migration step of double Holliday junction dissolution. PLoS One 2014; 9:e83582. [PMID: 24392087 PMCID: PMC3879244 DOI: 10.1371/journal.pone.0083582] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/06/2013] [Indexed: 11/19/2022] Open
Abstract
Although Blm and Top3α are known to form a minimal dissolvasome that can uniquely undo a double Holliday junction structure, the details of the mechanism remain unknown. It was originally suggested that Blm acts first to create a hemicatenane structure from branch migration of the junctions, followed by Top3α performing strand passage to decatenate the interlocking single strands. Recent evidence suggests that Top3α may also be important for assisting in the migration of the junctions. Using a mismatch-dHJ substrate (MM-DHJS) and eukaryotic Top1 (in place of Top3α), we show that the presence of a topoisomerase is required for Blm to substantially migrate a topologically constrained Holliday junction. When investigated by electron microscopy, these migrated structures did not resemble a hemicatenane. However, when Blm is together with Top3α, the dissolution reaction is processive with no pausing at a partially migrated structure. Potential mechanisms are discussed.
Collapse
Affiliation(s)
- Stefanie Hartman Chen
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jody L. Plank
- Department of Microbiology, University of California Davis, Davis, California, United States of America
| | - Smaranda Willcox
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jack D. Griffith
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Tao-shih Hsieh
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
8
|
Bradley AS, Baharoglu Z, Niewiarowski A, Michel B, Tsaneva IR. Formation of a stable RuvA protein double tetramer is required for efficient branch migration in vitro and for replication fork reversal in vivo. J Biol Chem 2011; 286:22372-83. [PMID: 21531731 DOI: 10.1074/jbc.m111.233908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2(KaP), specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2(KaP) is fully active for homologous recombination in vivo. RuvA2(KaP) is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2(KaP) for forks is decreased compared with wild type. Accordingly, RuvA2(KaP) is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2(KaP) is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2(KaP) is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.
Collapse
Affiliation(s)
- Alison S Bradley
- Department of Structural and Molecular Biology, Darwin Building, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
9
|
Ishida H. Branch migration of Holliday junction in RuvA tetramer complex studied by umbrella sampling simulation using a path-search algorithm. J Comput Chem 2010; 31:2317-29. [PMID: 20575014 DOI: 10.1002/jcc.21525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Branch migration of the Holliday junction takes place at the center of the RuvA tetramer. To elucidate how branch migration occurs, umbrella sampling simulations were performed for complexes of the RuvA tetramer and Holliday junction DNA. Although conventional umbrella sampling simulations set sampling points a priori, the umbrella sampling simulation in this study set the sampling points one by one in order to search for a realistic path of the branch migration during the simulations. Starting from the X-ray structure of the complex, in which the hydrogen bonds between two base-pairs were unformed, the hydrogen bonds between the next base-pairs of the shrinking stems were observed to start to disconnect. At the intermediate stage, three or four of the eight unpaired bases interacted closely with the acidic pins from RuvA. During the final stage, these bases moved away from the pins and formed the hydrogen bonds of the new base-pairs of the growing stems. The free-energy profile along this reaction path showed that the intermediate stage was a meta-stable state between two free-energy barriers of about 10 to 15 kcal/mol. These results imply that the pins play an important role in stabilizing the interactions between the pins and the unpaired base-pairs.
Collapse
Affiliation(s)
- Hisashi Ishida
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umemidai, Kizugawa-shi, Kyoto 619-0215, Japan.
| |
Collapse
|
10
|
Morita R, Nakane S, Shimada A, Inoue M, Iino H, Wakamatsu T, Fukui K, Nakagawa N, Masui R, Kuramitsu S. Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems. J Nucleic Acids 2010; 2010:179594. [PMID: 20981145 PMCID: PMC2957137 DOI: 10.4061/2010/179594] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/27/2010] [Indexed: 11/20/2022] Open
Abstract
DNA is subjected to many endogenous and exogenous damages. All organisms have developed a complex network of DNA repair mechanisms. A variety of different DNA repair pathways have been reported: direct reversal, base excision repair, nucleotide excision repair, mismatch repair, and recombination repair pathways. Recent studies of the fundamental mechanisms for DNA repair processes have revealed a complexity beyond that initially expected, with inter- and intrapathway complementation as well as functional interactions between proteins involved in repair pathways. In this paper we give a broad overview of the whole DNA repair system and focus on the molecular basis of the repair machineries, particularly in Thermus thermophilus HB8.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Perry JJP, Cotner-Gohara E, Ellenberger T, Tainer JA. Structural dynamics in DNA damage signaling and repair. Curr Opin Struct Biol 2010; 20:283-94. [PMID: 20439160 DOI: 10.1016/j.sbi.2010.03.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Changing macromolecular conformations and complexes are critical features of cellular networks, typified by DNA damage response pathways that are essential to life. These fluctuations enhance the specificity of macromolecular recognition and catalysis, and enable an integrated functioning of pathway components, ensuring efficiency while reducing off pathway reactions. Such dynamic complexes challenge classical detailed structural analyses, so their characterizations demand combining methods that provide detail with those that inform dynamics in solution. Small-angle X-ray scattering, electron microscopy, hydrogen-deuterium exchange and computation are complementing detailed structures from crystallography and NMR to provide comprehensive models for DNA damage searching, specificity, signaling, and repair. Here, we review new approaches and results on DNA damage responses that advance structural biology in the fourth dimension, connecting proteins to pathways.
Collapse
Affiliation(s)
- J Jefferson P Perry
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
12
|
Le Masson M, Baharoglu Z, Michel B. ruvA and ruvB mutants specifically impaired for replication fork reversal. Mol Microbiol 2008; 70:537-48. [PMID: 18942176 PMCID: PMC2628435 DOI: 10.1111/j.1365-2958.2008.06431.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Replication fork reversal (RFR) is a reaction that takes place in Escherichia coli at replication forks arrested by the inactivation of a replication protein. Fork reversal involves the annealing of the leading and lagging strand ends; it results in the formation of a Holliday junction adjacent to DNA double-strand end, both of which are processed by recombination enzymes. In several replication mutants, replication fork reversal is catalysed by the RuvAB complex, originally characterized for its role in the last steps of homologous recombination, branch migration and resolution of Holliday junctions. We present here the isolation and characterization of ruvA and ruvB single mutants that are impaired for RFR at forks arrested by the inactivation of polymerase III, while they remain capable of homologous recombination. The positions of the mutations in the proteins and the genetic properties of the mutants suggest that the mutations affect DNA binding, RuvA-RuvB interaction and/or RuvB-helicase activity. These results show that a partial RuvA or RuvB defect affects primarily RFR, implying that RFR is a more demanding reaction than Holliday junction resolution.
Collapse
Affiliation(s)
- Marie Le Masson
- CNRS, Centre de Génétique Moléculaire, UPR 2167, Gif-sur-Yvette, F-91198, France
| | | | | |
Collapse
|
13
|
Fujiwara Y, Mayanagi K, Morikawa K. Functional significance of octameric RuvA for a branch migration complex from Thermus thermophilus. Biochem Biophys Res Commun 2007; 366:426-31. [PMID: 18068124 DOI: 10.1016/j.bbrc.2007.11.149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 11/26/2007] [Indexed: 11/25/2022]
Abstract
The RuvAB complex promotes migration of Holliday junction at the late stage of homologous recombination. The RuvA tetramer specifically recognizes Holliday junction to form two types of complexes. A single tetramer is bound to the open configuration of the junction DNA in complex I, while the octameric RuvA core structure sandwiches the same junction in complex II. The hexameric RuvB rings, symmetrically bound to both sides of RuvA on Holliday junction, pump out DNA duplexes, depending upon ATP hydrolysis. We investigated functional differences between the wild-type RuvA from Thermus thermophilus and mutants impaired the ability of complex II formation. These mutant RuvA, exclusively forming complex I, reduced activities of branch migration and ATP hydrolysis, suggesting that the octameric RuvA is essential for efficient branch migration. Together with our recent electron microscopic analysis, this finding provides important insights into functional roles of complex II in the coordinated branch migration mechanism.
Collapse
Affiliation(s)
- Yoshie Fujiwara
- Graduate School of Engineering Science, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | | | | |
Collapse
|