1
|
Ansari MA, Shoaib S, Alomary MN, Ather H, Ansari SMA, Hani U, Jamous YF, Alyahya SA, Alharbi JN, Imran MA, Wahab S, Ahmad W, Islam N. Deciphering the emerging role of phytocompounds: Implications in the management of drug-resistant tuberculosis and ATDs-induced hepatic damage. J Infect Public Health 2023; 16:1443-1459. [PMID: 37523915 DOI: 10.1016/j.jiph.2023.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/05/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023] Open
Abstract
Tuberculosis is a disease of poverty, discrimination, and socioeconomic burden. Epidemiological studies suggest that the mortality and incidence of tuberculosis are unacceptably higher worldwide. Genomic mutations in embCAB, embR, katG, inhA, ahpC, rpoB, pncA, rrs, rpsL, gyrA, gyrB, and ethR contribute to drug resistance reducing the susceptibility of Mycobacterium tuberculosis to many antibiotics. Additionally, treating tuberculosis with antibiotics also poses a serious risk of hepatotoxicity in the patient's body. Emerging data on drug-induced liver injury showed that anti-tuberculosis drugs remarkably altered levels of hepatotoxicity biomarkers. The review is an attempt to explore the anti-mycobacterial potential of selected, commonly available, and well-known phytocompounds and extracts of medicinal plants against strains of Mycobacterium tuberculosis. Many studies have demonstrated that phytocompounds such as flavonoids, alkaloids, terpenoids, and phenolic compounds have antibacterial action against Mycobacterium species, inhibiting the bacteria's growth and replication, and sometimes, causing cell death. Phytocompounds act by disrupting bacterial cell walls and membranes, reducing enzyme activity, and interfering with essential metabolic processes. The combination of these processes reduces the overall survivability of the bacteria. Moreover, several phytochemicals have synergistic effects with antibiotics routinely used to treat TB, improving their efficacy and decreasing the risk of resistance development. Interestingly, phytocompounds have been presented to reduce isoniazid- and ethambutol-induced hepatotoxicity by reversing serum levels of AST, ALP, ALT, bilirubin, MDA, urea, creatinine, and albumin to their normal range, leading to attenuation of inflammation and hepatic necrosis. As a result, phytochemicals represent a promising field of research for the development of new TB medicines.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia.
| | - Shoaib Shoaib
- Department Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Mohammad N Alomary
- Advanced Diagnostic and Therapeutic Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Hissana Ather
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | | | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Yahya F Jamous
- Vaccine and Bioprocessing Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Sami A Alyahya
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Jameela Naif Alharbi
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| | - Mohammad Azhar Imran
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 120752, Republic of Korea
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Najmul Islam
- Department Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
| |
Collapse
|
2
|
Zhao Z, Feng M, Wan J, Zheng X, Teng C, Xie X, Pan W, Hu B, Huang J, Liu Z, Wu J, Cai S. Research progress of epigallocatechin-3-gallate (EGCG) on anti-pathogenic microbes and immune regulation activities. Food Funct 2021; 12:9607-9619. [PMID: 34549212 DOI: 10.1039/d1fo01352a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
At the end of 2019, the COVID-19 virus spread worldwide, infecting millions of people. Infectious diseases induced by pathogenic microorganisms such as the influenza virus, hepatitis virus, and Mycobacterium tuberculosis are also a major threat to public health. The high mortality caused by infectious pathogenic microorganisms is due to their strong virulence, which leads to the excessive counterattack by the host immune system and severe inflammatory damage of the immune system. This paper reviews the efficacy, mechanism and related immune regulation of epigallocatechin-3-gallate (EGCG) as an anti-pathogenic microorganism drug. EGCG mainly shows both direct and indirect anti-infection effects. EGCG directly inhibits early infection by interfering with the adsorption on host cells, inhibiting virus replication and reducing bacterial biofilm formation and toxin release; EGCG indirectly inhibits infection by regulating immune inflammation and antioxidation. At the same time, we reviewed the bioavailability and safety of EGCG in vivo. At present, the bioavailability of EGCG can be improved to some extent using nanostructured drug delivery systems and molecular modification technology in combination with other drugs. This study provides a theoretical basis for the development of EGCG as an adjuvant drug for anti-pathogenic microorganisms.
Collapse
Affiliation(s)
- Zijuan Zhao
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China. .,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Meiyan Feng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China. .,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Juan Wan
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China. .,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Xin Zheng
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China. .,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Cuiqin Teng
- Wuzhou Institute of Agricultural, Wuzhou 543003, China
| | - Xinya Xie
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China. .,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Wenjing Pan
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China. .,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Baozhu Hu
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China. .,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Jianan Huang
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China. .,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghua Liu
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China. .,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua Wu
- Wuzhou Institute of Agricultural, Wuzhou 543003, China
| | - Shuxian Cai
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China. .,Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China.,Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Maiolini M, Gause S, Taylor J, Steakin T, Shipp G, Lamichhane P, Deshmukh B, Shinde V, Bishayee A, Deshmukh RR. The War against Tuberculosis: A Review of Natural Compounds and Their Derivatives. Molecules 2020; 25:molecules25133011. [PMID: 32630150 PMCID: PMC7412169 DOI: 10.3390/molecules25133011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB), caused by the bacterial organism Mycobacterium tuberculosis, pose a major threat to public health, especially in middle and low-income countries. Worldwide in 2018, approximately 10 million new cases of TB were reported to the World Health Organization (WHO). There are a limited number of medications available to treat TB; additionally, multi-drug resistant TB and extensively-drug resistant TB strains are becoming more prevalent. As a result of various factors, such as increased costs of developing new medications and adverse side effects from current medications, researchers continue to evaluate natural compounds for additional treatment options. These substances have the potential to target bacterial cell structures and may contribute to successful treatment. For example, a study reported that green and black tea, which contains epigallocatechin gallate (a phenolic antioxidant), may decrease the risk of contracting TB in experimental subjects; cumin (a seed from the parsley plant) has been demonstrated to improve the bioavailability of rifampicin, an important anti-TB medication, and propolis (a natural substance produced by honeybees) has been shown to improve the binding affinity of anti-TB medications to bacterial cell structures. In this article, we review the opportunistic pathogen M. tuberculosis, various potential therapeutic targets, available therapies, and natural compounds that may have anti-TB properties. In conclusion, different natural compounds alone as well as in combination with already approved medication regimens should continue to be investigated as treatment options for TB.
Collapse
Affiliation(s)
- Morgan Maiolini
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (M.M.); (S.G.); (J.T.); (T.S.)
| | - Stacey Gause
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (M.M.); (S.G.); (J.T.); (T.S.)
| | - Jerika Taylor
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (M.M.); (S.G.); (J.T.); (T.S.)
| | - Tara Steakin
- School of Pharmacy, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA; (M.M.); (S.G.); (J.T.); (T.S.)
| | - Ginger Shipp
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Purushottam Lamichhane
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Bhushan Deshmukh
- Department of Chemistry, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon 425 001, Maharashtra, India;
| | - Vaibhav Shinde
- Department of Pharmacognosy, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune-411 038, Maharashtra, India;
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: or (A.B.); (R.R.D.); Tel.: +1-941-782-5950 (A.B.); +1-941-782-5646 (R.R.D.)
| | - Rahul R. Deshmukh
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: or (A.B.); (R.R.D.); Tel.: +1-941-782-5950 (A.B.); +1-941-782-5646 (R.R.D.)
| |
Collapse
|
4
|
Sharma A, Vaghasiya K, Ray E, Gupta P, Gupta UD, Singh AK, Verma RK. Targeted Pulmonary Delivery of the Green Tea Polyphenol Epigallocatechin Gallate Controls the Growth of Mycobacterium tuberculosis by Enhancing the Autophagy and Suppressing Bacterial Burden. ACS Biomater Sci Eng 2020; 6:4126-4140. [PMID: 33463343 DOI: 10.1021/acsbiomaterials.0c00823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growing rates of tuberculosis (TB) superbugs are alarming, which has hampered the progress made to-date to control this infectious disease, and new drug candidates are few. Epigallocatechin gallate (EGCG), a major polyphenolic compound from green tea extract, shows powerful efficacy against TB bacteria in in vitro studies. However, the therapeutic efficacy of the molecule is limited due to poor pharmacokinetics and low bioavailability following oral administration. Aiming to improve the treatment outcomes of EGCG therapy, we investigated whether encapsulation and pulmonary delivery of the molecule would allow the direct targeting of the site of infection without compromising the activity. Microencapsulation of EGCG was realized by scalable spray-freeze-drying (SFD) technology, forming free-flowing micrometer-sized microspheres (epigallocatechin-3-gallate-loaded trehalose microspheres, EGCG-t-MS) of trehalose sugar. These porous microspheres exhibited appropriate aerodynamic parameters and high encapsulation efficiencies. In vitro studies demonstrated that EGCG-t-MS exhibited dose- and time-dependent killing of TB bacteria inside mouse macrophages by cellular mechanisms of lysosome acidification and autophagy induction. In a preclinical study on TB-infected Balb/c mice model (4 weeks of infection), we demonstrate that the microencapsulated EGCG, administered 5 days/week for 6 weeks by pulmonary delivery, showed exceptional efficacy compared to oral treatment of free drug. This treatment approach exhibited therapeutic outcomes by resolution of inflammation in the infected lungs and significant reduction (P < 0.05) in bacterial burden (up to ∼2.54 Log10 CFU) compared to untreated control and orally treated mice groups. No pathological granulomas, lesions, and inflammation were observed in the histopathological investigation, compared to untreated controls. The encouraging results of the study may pave the avenues for future use of EGCG in TB therapeutics by targeted pulmonary delivery and lead to its translational success.
Collapse
Affiliation(s)
- Ankur Sharma
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab-160062, India
| | - Kalpesh Vaghasiya
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab-160062, India
| | - Eupa Ray
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab-160062, India
| | - Pushpa Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra-282001, India
| | - Umesh Datta Gupta
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra-282001, India
| | - Amit Kumar Singh
- National JALMA Institute for Leprosy and Other Mycobacterial Diseases (ICMR), Tajganj, Agra-282001, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Phase-10, Sector-64, Mohali, Punjab-160062, India
| |
Collapse
|
5
|
de Ávila MB, Bitencourt-Ferreira G, de Azevedo WF. Structural Basis for Inhibition of Enoyl-[Acyl Carrier Protein] Reductase (InhA) from Mycobacterium tuberculosis. Curr Med Chem 2020; 27:745-759. [DOI: 10.2174/0929867326666181203125229] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/26/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Background::
The enzyme trans-enoyl-[acyl carrier protein] reductase (InhA) is a central
protein for the development of antitubercular drugs. This enzyme is the target for the pro-drug
isoniazid, which is catalyzed by the enzyme catalase-peroxidase (KatG) to become active.
Objective::
Our goal here is to review the studies on InhA, starting with general aspects and focusing on
the recent structural studies, with emphasis on the crystallographic structures of complexes involving
InhA and inhibitors.
Method::
We start with a literature review, and then we describe recent studies on InhA crystallographic
structures. We use this structural information to depict protein-ligand interactions. We also analyze the
structural basis for inhibition of InhA. Furthermore, we describe the application of computational
methods to predict binding affinity based on the crystallographic position of the ligands.
Results::
Analysis of the structures in complex with inhibitors revealed the critical residues responsible
for the specificity against InhA. Most of the intermolecular interactions involve the hydrophobic residues
with two exceptions, the residues Ser 94 and Tyr 158. Examination of the interactions has shown
that many of the key residues for inhibitor binding were found in mutations of the InhA gene in the
isoniazid-resistant Mycobacterium tuberculosis. Computational prediction of the binding affinity for
InhA has indicated a moderate uphill relationship with experimental values.
Conclusion::
Analysis of the structures involving InhA inhibitors shows that small modifications on
these molecules could modulate their inhibition, which may be used to design novel antitubercular
drugs specific for multidrug-resistant strains.
Collapse
Affiliation(s)
- Maurício Boff de Ávila
- Laboratory of Computational Systems Biology, School of Sciences - Pontifical Catholic University of Rio, Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre-RS 90619-900, Brazil
| | - Gabriela Bitencourt-Ferreira
- Laboratory of Computational Systems Biology, School of Sciences - Pontifical Catholic University of Rio, Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre-RS 90619-900, Brazil
| | - Walter Filgueira de Azevedo
- Laboratory of Computational Systems Biology, School of Sciences - Pontifical Catholic University of Rio, Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre-RS 90619-900, Brazil
| |
Collapse
|
6
|
Nakano S, Megro SI, Hase T, Suzuki T, Isemura M, Nakamura Y, Ito S. Computational Molecular Docking and X-ray Crystallographic Studies of Catechins in New Drug Design Strategies. Molecules 2018; 23:E2020. [PMID: 30104534 PMCID: PMC6222539 DOI: 10.3390/molecules23082020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/09/2018] [Accepted: 08/11/2018] [Indexed: 12/16/2022] Open
Abstract
Epidemiological and laboratory studies have shown that green tea and green tea catechins exert beneficial effects on a variety of diseases, including cancer, metabolic syndrome, infectious diseases, and neurodegenerative diseases. In most cases, (-)-epigallocatechin gallate (EGCG) has been shown to play a central role in these effects by green tea. Catechins from other plant sources have also shown health benefits. Many studies have revealed that the binding of EGCG and other catechins to proteins is involved in its action mechanism. Computational docking analysis (CMDA) and X-ray crystallographic analysis (XCA) have provided detailed information on catechin-protein interactions. Several of these studies have revealed that the galloyl moiety anchors it to the cleft of proteins through interactions with its hydroxyl groups, explaining the higher activity of galloylated catechins such as EGCG and epicatechin gallate than non-galloylated catechins. In this paper, we review the results of CMDA and XCA of EGCG and other plant catechins to understand catechin-protein interactions with the expectation of developing new drugs with health-promoting properties.
Collapse
Affiliation(s)
- Shogo Nakano
- School of Food and Nutritional Sciences, Shizuoka University, Yada, Shizuoka 422-8526, Japan.
| | - Shin-Ichi Megro
- Biological Science Research, Kao Corporation, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| | - Tadashi Hase
- Research and Development, Core Technology, Kao Corporation, Sumida, Tokyo 131-8501, Japan.
| | - Takuji Suzuki
- Faculty of Education, Art and Science, Yamagata University, Yamagata 990-8560, Japan.
| | - Mamoru Isemura
- School of Food and Nutritional Sciences, Shizuoka University, Yada, Shizuoka 422-8526, Japan.
| | - Yoriyuki Nakamura
- School of Food and Nutritional Sciences, Shizuoka University, Yada, Shizuoka 422-8526, Japan.
| | - Sohei Ito
- School of Food and Nutritional Sciences, Shizuoka University, Yada, Shizuoka 422-8526, Japan.
| |
Collapse
|
7
|
(-)-Epigallocatechin 3-Gallate Synthetic Analogues Inhibit Fatty Acid Synthase and Show Anticancer Activity in Triple Negative Breast Cancer. Molecules 2018; 23:molecules23051160. [PMID: 29751678 PMCID: PMC6099607 DOI: 10.3390/molecules23051160] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/02/2018] [Accepted: 05/10/2018] [Indexed: 12/27/2022] Open
Abstract
(−)-Epigallocatechin 3-gallate (EGCG) is a natural polyphenol from green tea with reported anticancer activity and capacity to inhibit the lipogenic enzyme fatty acid synthase (FASN), which is overexpressed in several human carcinomas. To improve the pharmacological profile of EGCG, we previously developed a family of EGCG derivatives and the lead compounds G28, G37 and G56 were characterized in HER2-positive breast cancer cells overexpressing FASN. Here, diesters G28, G37 and G56 and two G28 derivatives, monoesters M1 and M2, were synthesized and assessed in vitro for their cytotoxic, FASN inhibition and apoptotic activities in MDA-MB-231 triple-negative breast cancer (TNBC) cells. All compounds displayed moderate to high cytotoxicity and significantly blocked FASN activity, monoesters M1 and M2 being more potent inhibitors than diesters. Interestingly, G28, M1, and M2 also diminished FASN protein expression levels, but only monoesters M1 and M2 induced apoptosis. Our results indicate that FASN inhibition by such polyphenolic compounds could be a new strategy in TNBC treatment, and highlight the potential anticancer activities of monoesters. Thus, G28, G37, G56, and most importantly M1 and M2, are anticancer candidates (alone or in combination) to be further characterized in vitro and in vivo.
Collapse
|
8
|
Soh AZ, Pan A, Chee CBE, Wang YT, Yuan JM, Koh WP. Tea Drinking and Its Association with Active Tuberculosis Incidence among Middle-Aged and Elderly Adults: The Singapore Chinese Health Study. Nutrients 2017; 9:nu9060544. [PMID: 28587081 PMCID: PMC5490523 DOI: 10.3390/nu9060544] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/17/2017] [Accepted: 05/23/2017] [Indexed: 12/02/2022] Open
Abstract
Experimental studies showed that tea polyphenols may inhibit growth of Mycobacterium tuberculosis. However, no prospective epidemiologic study has investigated tea drinking and the risk of active tuberculosis. We investigated this association in the Singapore Chinese Health Study, a prospective population-based cohort of 63,257 Chinese aged 45–74 years recruited between 1993 and 1998 in Singapore. Information on habitual drinking of tea (including black and green tea) and coffee was collected via structured questionnaires. Incident cases of active tuberculosis were identified via linkage with the nationwide tuberculosis registry up to 31 December 2014. Cox proportional hazard models were used to estimate the relation of tea and coffee consumption with tuberculosis risk. Over a mean 16.8 years of follow-up, we identified 1249 incident cases of active tuberculosis. Drinking either black or green tea was associated with a dose-dependent reduction in tuberculosis risk. Compared to non-drinkers, the hazard ratio (HR) (95% confidence interval (CI)) was 1.01 (0.85–1.21) in monthly tea drinkers, 0.84 (0.73–0.98) in weekly drinkers, and 0.82 (0.71–0.96) in daily drinkers (p for trend = 0.003). Coffee or caffeine intake was not significantly associated with tuberculosis risk. In conclusion, regular tea drinking was associated with a reduced risk of active tuberculosis.
Collapse
Affiliation(s)
- Avril Zixin Soh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Cynthia Bin Eng Chee
- Singapore Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore 308089, Singapore.
| | - Yee-Tang Wang
- Singapore Tuberculosis Control Unit, Tan Tock Seng Hospital, Singapore 308089, Singapore.
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, and Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA.
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
- Office of Clinical Sciences, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
9
|
Peter B, Bosze S, Horvath R. Biophysical characteristics of proteins and living cells exposed to the green tea polyphenol epigallocatechin-3-gallate (EGCg): review of recent advances from molecular mechanisms to nanomedicine and clinical trials. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:1-24. [PMID: 27313063 DOI: 10.1007/s00249-016-1141-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/09/2016] [Accepted: 05/14/2016] [Indexed: 12/13/2022]
Abstract
Herbs and traditional medicines have been applied for thousands of years, but researchers started to study their mode of action at the molecular, cellular and tissue levels only recently. Nowadays, just like in ancient times, natural compounds are still determining factors in remedies. To support this statement, the recently won Nobel Prize for an anti-malaria agent from the plant sweet wormwood, which had been used to effectively treat the disease, could be mentioned. Among natural compounds and traditional Chinese medicines, the green tea polyphenol epigallocatechin gallate (EGCg) is one of the most studied active substances. In the present review, we summarize the molecular scale interactions of proteins and EGCg with special focus on its limited stability and antioxidant properties. We outline the observed biophysical effects of EGCg on various cell lines and cultures. The alteration of cell adhesion, motility, migration, stiffness, apoptosis, proliferation as well as the different impacts on normal and cancer cells are all reviewed. We also handle the works performed using animal models, microbes and clinical trials. Novel ways to develop its utilization for therapeutic purposes in the future are discussed too, for instance, using nanoparticles and green tea polyphenols together to cure illnesses and the combination of EGCg and anticancer compounds to intensify their effects. The limitations of the employed experimental models and criticisms of the interpretation of the obtained experimental data are summarized as well.
Collapse
Affiliation(s)
- Beatrix Peter
- Doctoral School of Molecular- and Nanotechnologies, University of Pannonia, Veszprém, 8200, Hungary. .,Nanobiosensorics Group, Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, Budapest, 1121, Hungary.
| | - Szilvia Bosze
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, POB 32, Budapest 112, 1518, Hungary
| | - Robert Horvath
- Nanobiosensorics Group, Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, Budapest, 1121, Hungary
| |
Collapse
|
10
|
Impact of tea drinking upon tuberculosis: a neglected issue. BMC Public Health 2015; 15:515. [PMID: 26021567 PMCID: PMC4446809 DOI: 10.1186/s12889-015-1855-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 05/19/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is a global public health issue posing serious harm to the human health. Many studies have suggested that smoking and excessive alcohol consumption are risk factors for TB. Laboratory evidence suggests that EGCG in tea leaves can arrest the growth of tubercle bacillus. Can drinking tea lead to decreased susceptibility of TB in humans? METHODS A total of 574 TB patients and 582 healthy controls were recruited to participate in this case-control study. Self-designed questionnaire was used to collect data. Unconditioned logistic regression analysis was conducted to identify the associations between tea drinking and TB. RESULTS Tea drinking has a negative association with TB, with OR = 0.583(0.423, 0.804) and P < 0.05. Drinking black tea, oolong and green tea are all negative association with TB, with OR being 0.683(0.517, 0.902), 0.674(0.508, 0.894) and 0.534(0.349, 0.817) respectively and P < 0.05. Trend χ (2) test indicated a decreasing risk for TB with increased tea consumption, with P < 0.05. CONCLUSION There is a significance negative association between tea drinking and TB. Promoting the consumption of tea as the daily drink among populations, particularly those with high TB risk, may reduce the incidence of TB in the populations.
Collapse
|
11
|
Dey D, Ray R, Hazra B. Antimicrobial activity of pomegranate fruit constituents against drug-resistant Mycobacterium tuberculosis and β-lactamase producing Klebsiella pneumoniae. PHARMACEUTICAL BIOLOGY 2015; 53:1474-80. [PMID: 25858784 DOI: 10.3109/13880209.2014.986687] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
CONTEXT The global surge in multi-drug resistant bacteria and the imminence of tuberculosis pandemic necessitate alternative therapeutic approaches to augment the existing medications. Pomegranate, the fruit of Punica granatum Linn. (Punicaceae), widely recognized for potency against a broad spectrum of bacterial pathogens, deserves further investigation in this respect. OBJECTIVE This study determines the therapeutic potential of pomegranate juice, extracts of non-edible peel prepared with methanol/water, and its four polyphenolic constituents, namely caffeic acid, ellagic acid, epigallocatechin-3-gallate (EGCG) and quercetin, against drug-resistant clinical isolates. MATERIALS AND METHODS Phenotypic characterisation of Mycobacterium tuberculosis, extended-spectrum β-lactamase (ESBL) and KPC-type carbapenemase producing Klebsiella pneumoniae was performed by biochemical and molecular methods. Resistance profiles of M. tuberculosis and K. pneumoniae were determined using LJ proportion and Kirby-Bauer methods, respectively. Pomegranate fruit extracts, and the compounds, were evaluated at a dose range of 1024-0.5 µg/mL, and 512-0.25 µg/mL, respectively, to determine minimum inhibitory (MIC) and bactericidal concentrations (MBC) against the drug-resistant isolates by the broth micro-dilution method. RESULTS The peel extracts exhibited greater antimycobacterial activity (MIC 64-1024 μg/mL) than the potable juice (MIC 256 - > 1024 μg/mL). EGCG and quercetin exhibited higher antitubercular (MIC 32-256 μg/mL) and antibacterial (MIC 64-56 μg/mL) potencies than caffeic acid and ellagic acid (MIC 64-512 μg/mL). DISCUSSION AND CONCLUSION The pomegranate fruit peel and pure constituents were active against a broad panel of M. tuberculosis and β-lactamase producing K. pneumoniae isolates. EGCG and quercetin need further investigation for prospective application against respiratory infections.
Collapse
Affiliation(s)
- Diganta Dey
- Department of Pharmaceutical Technology, Jadavpur University , Kolkata, West Bengal , India and
| | | | | |
Collapse
|
12
|
Sun T, Qin B, Gao M, Yin Y, Wang C, Zang S, Li X, Zhang C, Xin Y, Jiang T. Effects of epigallocatechin gallate on the cell-wall structure of Mycobacterial smegmatis mc²155. Nat Prod Res 2014; 29:2122-4. [PMID: 25495515 DOI: 10.1080/14786419.2014.989391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Epigallocatechin gallate (EGCG) is the main component of green tea extracts that inhibits the growth of Mycobacterial smegmatis mc(2)155, and the mechanism is not clear. This study showed the effects of EGCG on the growth of mc(2)155. The content and the structure of EGCG in LB medium with mc(2)155 were identified by HPLC and LC/MS. Transmission electron microscopy was utilised to identify the cell envelope structure. As a result, the optional inhibition concentration was determined to be 20 μg mL(-1). Most of EGCG was transferred into its isomeride in LB medium, but the inhibition effects against mc(2)155 had yet been maintained. The changes of cell envelope structure were showed after EGCG treatment for 18 h. The cell wall appeared to have a less electron-translucent zone, turn rougher and thicker. The results show that EGCG impacts the integrity of mycobacterial cell wall and is likely be a better prophylactic agent against tuberculosis.
Collapse
Affiliation(s)
- Tieying Sun
- a Department of Biotechnology , Dalian Medical University , Dalian 116044 , P.R. China
| | - Biaojie Qin
- b Biochemistry and Molecular Biology Department , Dalian Medical University , Dalian 116044 , P.R. China
| | - Mingchuan Gao
- a Department of Biotechnology , Dalian Medical University , Dalian 116044 , P.R. China
| | - Yuling Yin
- a Department of Biotechnology , Dalian Medical University , Dalian 116044 , P.R. China
| | - Changyuan Wang
- c Clinical Pharmacology Department , College of Pharmacy in Dalian Medical University , Dalian 116044 , P.R. China
| | - Shizhu Zang
- a Department of Biotechnology , Dalian Medical University , Dalian 116044 , P.R. China
| | - Xinli Li
- a Department of Biotechnology , Dalian Medical University , Dalian 116044 , P.R. China
| | - Cuili Zhang
- a Department of Biotechnology , Dalian Medical University , Dalian 116044 , P.R. China
| | - Yi Xin
- a Department of Biotechnology , Dalian Medical University , Dalian 116044 , P.R. China
| | - Tao Jiang
- a Department of Biotechnology , Dalian Medical University , Dalian 116044 , P.R. China
| |
Collapse
|
13
|
Duan X, Xiang X, Xie J. Crucial components of mycobacterium type II fatty acid biosynthesis (Fas-II) and their inhibitors. FEMS Microbiol Lett 2014; 360:87-99. [DOI: 10.1111/1574-6968.12597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 01/27/2023] Open
Affiliation(s)
- Xiangke Duan
- Institute of Modern Biopharmaceuticals; State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area; Key Laboratory of Eco-Environments in Three Gorges Reservoir Region; Ministry of Education; School of Life Sciences; Southwest University; Beibei Chongqing China
| | - Xiaohong Xiang
- Institute of Modern Biopharmaceuticals; State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area; Key Laboratory of Eco-Environments in Three Gorges Reservoir Region; Ministry of Education; School of Life Sciences; Southwest University; Beibei Chongqing China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals; State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area; Key Laboratory of Eco-Environments in Three Gorges Reservoir Region; Ministry of Education; School of Life Sciences; Southwest University; Beibei Chongqing China
| |
Collapse
|
14
|
Bansal S, Choudhary S, Sharma M, Kumar SS, Lohan S, Bhardwaj V, Syan N, Jyoti S. Tea: A native source of antimicrobial agents. Food Res Int 2013. [PMCID: PMC7126541 DOI: 10.1016/j.foodres.2013.01.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tea (Camellia sinensis) is one of the most popular nonalcoholic beverages, consumed by over two-thirds of the world's population because of its refreshing, mild stimulant and medicinal properties. It is processed in different ways in different parts of the world to give green, black, oolong, and pu-erh tea. Among all tea polyphenols, epigallocatechin-3-gallate has been responsible for much of the health promoting abilities of tea including anti-inflammatory, antimicrobial, antitumour, anti-oxidative, protection from cardiovascular disease, anti-obesity, and anti-aging properties. In the present review, the antibacterial, antiviral, and antifungal activities of different types of tea and their polyphenols are reported, highlighting their mechanisms of action and structure–activity relationship. Moreover, considering that the changing patterns of infectious diseases and the emergence of microbial strains resistant to current antibiotics, there is an urgent need to find out new potent antimicrobial agents as adjuvants to antibiotic therapy. The synergistic effect of tea polyphenols in combination with conventional antimicrobial agents against clinical multidrug-resistant microorganisms has also been discussed in this review.
Collapse
Affiliation(s)
- Sumit Bansal
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
- Corresponding author. Tel.: + 91 1792 239219; fax: + 91 1792 245362.
| | - Shivani Choudhary
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India
| | - Manu Sharma
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Suthar Sharad Kumar
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Sandeep Lohan
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Varun Bhardwaj
- Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| | - Navneet Syan
- Department of Pharmaceutical Chemistry, Ganpati Institute of Pharmacy, Bilaspur, Haryana, India
| | - Saras Jyoti
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India
| |
Collapse
|
15
|
Banerjee T, Sharma SK, Surolia N, Surolia A. Epigallocatechin gallate is a slow-tight binding inhibitor of enoyl-ACP reductase from Plasmodium falciparum. Biochem Biophys Res Commun 2008; 377:1238-42. [DOI: 10.1016/j.bbrc.2008.10.135] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 10/28/2008] [Indexed: 01/19/2023]
|
16
|
Liu J, Zhao M, Cui G, Zhang X, Wang J, Peng S. Methyl (11aS)-1,2,3,5,11,11a-hexahydro-3,3-dimethyl-1-oxo-6H-imidazo-[3',4':1,2]pyridin[3,4-b]indol-2-substituted acetates: synthesis and three-dimensional quantitative structure-activity relationship investigation as a class of novel vasodilators. J Med Chem 2008; 51:4715-23. [PMID: 18616237 DOI: 10.1021/jm800249j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To find selective inhibitor of phosphodiesterase type 5 (PDE5), the essential structure elements of clinically used drugs sildenafil, vardenafil, and tadalafil were combined and a tetracyclic parent was constructed to which in 2-positions substituted acetic acid methylesters were introduced to form 17 novel vasodilators, methyl (11aS)-1,2,3,5,11,11a-hexahydro-3,3-dimethyl-1-oxo-6H-imidazo[3',4':1,2]- pyridin[3,4-b]indol-2-substituted acetates. By molecular field analysis (MFA), an equation of three-dimensional quantitative structure-activity relationship (3D QSAR) was established, which not only revealed the dependence of the in vitro vasorelaxation activities on the structures but also pointed out the way to design new lead compounds properly. Docking these novel vasodilators into the hydrophobic pocket of phosphodiesterase type 5 (PDE5) revealed that their adaptabilities to this pocket did significantly affect on their vasorelaxation activity. Actually, the docking adaptabilities of these novel vasodilators to PDE5 were consistent with the conformational requirements of them to MFA and with the crystal conformation of two representatives.
Collapse
Affiliation(s)
- Jiawang Liu
- College of Pharmaceutical Sciences, Capital Medical UniVersity, Beijing 100069, PR China
| | | | | | | | | | | |
Collapse
|