1
|
Ibata M, Iwasaki J, Fujioka Y, Nakagawa K, Darmanin S, Onozawa M, Hashimoto D, Ohba Y, Hatakeyama S, Teshima T, Kondo T. Leukemogenic kinase FIP1L1-PDGFRA and a small ubiquitin-like modifier E3 ligase, PIAS1, form a positive cross-talk through their enzymatic activities. Cancer Sci 2017; 108:200-207. [PMID: 27960034 PMCID: PMC5367148 DOI: 10.1111/cas.13129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022] Open
Abstract
Fusion tyrosine kinases play a crucial role in the development of hematological malignancies. FIP1L1‐PDGFRA is a leukemogenic fusion kinase that causes chronic eosinophilic leukemia. As a constitutively active kinase, FIP1L1‐PDGFRA stimulates downstream signaling molecules, leading to cellular proliferation and the generation of an anti‐apoptotic state. Contribution of the N‐terminal FIP1L1 portion is necessary for FIP1L1‐PDGFRA to exert its full transforming activity, but the underlying mechanisms have not been fully characterized. We identified PIAS1 as a FIP1L1‐PDGFRA association molecule by yeast two‐hybrid screening. Our analyses indicate that the FIP1L1 portion of FIP1L1‐PDGFRA is required for efficient association with PIAS1. As a consequence of the association, FIP1L1‐PDGFRA phosphorylates PIAS1. Moreover, the kinase activity of FIP1L1‐PDGFRA stabilizes PIAS1. Therefore, PIAS1 is one of the downstream targets of FIP1L1‐PDGFRA. Moreover, we found that PIAS1, as a SUMO E3 ligase, sumoylates and stabilizes FIP1L1‐PDGFRA. In addition, suppression of PIAS1 activity by a knockdown experiment resulted in destabilization of FIP1L1‐PDGFRA. Therefore, FIP1L1‐PDGFRA and PIAS1 form a positive cross‐talk through their enzymatic activities. Suppression of sumoylation by ginkgolic acid, a small molecule compound inhibiting a SUMO E1‐activating enzyme, also destabilizes FIP1L1‐PDGFRA, and while the tyrosine kinase inhibitor imatinib suppresses FIP1L1‐PDGFRA‐dependent cell growth, ginkgolic acid or siRNA of PIAS1 has a synergistic effect with imatinib. In conclusion, our results suggest that sumoylation by PIAS1 is a potential target in the treatment of FIP1L1‐PDGFRA‐positive chronic eosinophilic leukemia.
Collapse
Affiliation(s)
- Makoto Ibata
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Junko Iwasaki
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoichiro Fujioka
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Koji Nakagawa
- Department of Laboratory of Pathophysiology and Therapeutics, Hokkaido University Faculty of Pharmaceutical Sciences, Sapporo, Japan
| | - Stephanie Darmanin
- Department of Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska University Hospital, Huddinge, Sweden
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takeshi Kondo
- Department of Hematology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Li B, Zhang G, Li C, Li R, Lu J, He Z, Wang Q, Peng Z, Wang J, Dong Y, Zhang C, Tan JQ, Bahri N, Wang Y, Duan C. Lyn mediates FIP1L1-PDGFRA signal pathway facilitating IL-5RA intracellular signal through FIP1L1-PDGFRA/JAK2/Lyn/Akt network complex in CEL. Oncotarget 2016; 8:64984-64998. [PMID: 29029406 PMCID: PMC5630306 DOI: 10.18632/oncotarget.11401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 07/26/2016] [Indexed: 11/25/2022] Open
Abstract
The Fip1-like1 (FIP1L1)–platelet-derived growth factor receptor alpha (PDGFRA) (F/P) oncogene can cause chronic eosinophilic leukemia (CEL), but requires IL-5 cytokine participation. In this study, we investigate the mechanism of F/P in collaboration with IL-5 in CEL. The results showed that Lyn, a key effector in the IL-5-motivated eosinophil production, is extensively activated in F/P-positive CEL cells. Lyn can associate and phosphorylate IL-5 receptor α (IL-5RA) in F/P-positive cells. Moreover, the activation of Lyn and IL-5R kinase were strengthened when the cells were stimulated by IL-5. Lyn inhibition in F/P-positive CEL cells attenuated cellular proliferation, induced apoptosis, and blocked cell migration and major basic protein (MBP) release. We identified the FIP1L1-PDGFRA/JAK2/Lyn/Akt complex in the F/P-expressing cells which can be disrupted by dual inhibition of JAK2 and Lyn, repressing cell proliferation in both EOL-1(F/P-positive human eosinophilic cell line) and imatinib-resistance (IR) cells. Altogether, our data demonstrate that Lyn is a vital downstream kinase activated by F/P converged with IL-5 signals in CEL cells. Lyn activate and expand IL-5RA intracellular signaling through FIP1L1-PDGFRA/JAK2/Lyn/Akt network complex, provoking eosinophils proliferation and exaggerated activation manifested as CEL.
Collapse
Affiliation(s)
- Bin Li
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Division of Hematology, Institute of Molecular Hematology, The Second Xiang Ya Hospital, Central South University, Changsha, People's Republic of China.,Division of Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Guangsen Zhang
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang Ya Hospital, Central South University, Changsha, People's Republic of China
| | - Cui Li
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ruijuan Li
- Division of Hematology, Institute of Molecular Hematology, The Second Xiang Ya Hospital, Central South University, Changsha, People's Republic of China
| | - Jingchen Lu
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhengxi He
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Quan Wang
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhenzi Peng
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jun Wang
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yeping Dong
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chunfang Zhang
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jie Qiong Tan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha, People's Republic of China
| | - Nacef Bahri
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yuexiang Wang
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,The Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chaojun Duan
- Medical Research Center, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
3
|
Haan S, Bahlawane C, Wang J, Nazarov PV, Muller A, Eulenfeld R, Haan C, Rolvering C, Vallar L, Satagopam VP, Sauter T, Wiesinger MY. The oncogenic FIP1L1-PDGFRα fusion protein displays skewed signaling properties compared to its wild-type PDGFRα counterpart. JAKSTAT 2015; 4:e1062596. [PMID: 26413425 PMCID: PMC4583054 DOI: 10.1080/21623996.2015.1062596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/05/2015] [Accepted: 06/09/2015] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of oncogenic kinases is frequently observed in human cancers, but the underlying mechanism and resulting effects on global signaling are incompletely understood. Here, we demonstrate that the oncogenic FIP1L1-PDGFRα kinase exhibits a significantly different signaling pattern compared to its PDGFRα wild type counterpart. Interestingly, the activation of primarily membrane-based signal transduction processes (such as PI3-kinase- and MAP-kinase- pathways) is remarkably shifted toward a prominent activation of STAT factors. This diverging signaling pattern compared to classical PDGF-receptor signaling is partially coupled to the aberrant cytoplasmic localization of the oncogene, since membrane targeting of FIP1L1-PDGFRα restores activation of MAPK- and PI3K-pathways. In stark contrast to the classical cytokine-induced STAT activation process, STAT activation by FIP1L1-PDGFRα does neither require Janus kinase activity nor Src kinase activity. Furthermore, we investigated the mechanism of STAT5 activation via FIP1L1-PDGFRα in more detail and found that STAT5 activation does not involve an SH2-domain-mediated binding mechanism. We thus demonstrate that STAT5 activation occurs via a non-canonical activation mechanism in which STAT5 may be subject to a direct phosphorylation by FIP1L1-PDGFRα.
Collapse
Affiliation(s)
- Serge Haan
- Molecular Disease Mechanisms Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Christelle Bahlawane
- Molecular Disease Mechanisms Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Jiali Wang
- Molecular Disease Mechanisms Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Petr V Nazarov
- Genomics Research Unit; Luxembourg Institute of Health; Luxembourg , Luxembourg
| | - Arnaud Muller
- Genomics Research Unit; Luxembourg Institute of Health; Luxembourg , Luxembourg
| | - René Eulenfeld
- Signal Transduction Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Claude Haan
- Signal Transduction Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Catherine Rolvering
- Signal Transduction Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Laurent Vallar
- Genomics Research Unit; Luxembourg Institute of Health; Luxembourg , Luxembourg
| | - Venkata P Satagopam
- Luxembourg Center for Systems Biomedicine; University of Luxembourg ; Esch-sur-Alzette, Luxembourg
| | - Thomas Sauter
- Systems Biology Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| | - Monique Yvonne Wiesinger
- Systems Biology Group; Life Sciences Research Unit; University of Luxembourg; Luxembourg , Luxembourg
| |
Collapse
|
4
|
E- and p-selectins are essential for repopulation of chronic myelogenous and chronic eosinophilic leukemias in a scid mouse xenograft model. PLoS One 2013; 8:e70139. [PMID: 23922938 PMCID: PMC3724803 DOI: 10.1371/journal.pone.0070139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/21/2013] [Indexed: 01/13/2023] Open
Abstract
In chronic myelogenous (CML) and chronic eosinophilic leukemia (CEL), neoplastic cells spread via the circulation into various extramedullary organs. As E- and P-selectin constitute the starting point for the leucocyte adhesion/invasion cascade, and CEL and CML cells share many properties with normal granulocytes, we investigated the role of these selectins in CEL and CML cell expansion and organ invasion in a xenotransplantation model using scid mice. Using two human leukemic cell lines (EOL-1 and K562), we were able to show that E- and P-selectins mediate leukemia cell tethering and adherence in a laminar flow assay. While E-selectin binding depended on sialylated carbohydrate moieties, P-selectin binding was completely (K562) or partially (EOL-1) independent of these carbohydrates indicating the involvement of non-canonical selectin ligands. In a xenograft model in scid mice, both cell lines invaded the bone marrow and other organs, formed chloromas, and ultimately produced an overt leukemia. In contrast, in E- and P-selectin knockout scid mice, the cells failed to show engraftment in 8 out of 10 animals and even if they did engraft, they produced only little organ invasion and chloroma formation. Together, these data suggest that E- and P-selectins play an important role in leukemic dissemination in CML and CEL.
Collapse
|
5
|
Li B, Zhang G, Li C, He D, Li X, Zhang C, Tang F, Deng X, Lu J, Tang Y, Li R, Chen Z, Duan C. Identification of JAK2 as a mediator of FIP1L1-PDGFRA-induced eosinophil growth and function in CEL. PLoS One 2012; 7:e34912. [PMID: 22523564 PMCID: PMC3327703 DOI: 10.1371/journal.pone.0034912] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 03/08/2012] [Indexed: 12/23/2022] Open
Abstract
The Fip1-like1 (FIP1L1)-platelet-derived growth factor receptor alpha fusion gene (F/P) arising in the pluripotent hematopoietic stem cell (HSC),causes 14% to 60% of patients with hypereosinophilia syndrome (HES). These patients, classified as having F/P (+) chronic eosinophilic leukemia (CEL), present with clonal eosinophilia and display a more aggressive disease phenotype than patients with F/P (–) HES patients. The mechanisms underlying predominant eosinophil lineage targeting and the cytotoxicity of eosinophils in this leukemia remain unclear. Given that the Janus tyrosine kinase (JAK)/signal transducers and activators of transcription (Stat) signaling pathway is key to cytokine receptor-mediated eosinophil development and activated Stat3 and Stat5 regulate the expression of genes involved in F/P malignant transformation, we investigated whether and how JAK proteins were involved in the pathogenesis of F/P-induced CEL. F/P activation of JAK2, Stat3 and Stat5, were confirmed in all the 11 F/P (+) CEL patients examined. In vitro inhibition of JAK2 in EOL-1, primary F/P(+) CEL cells (PC) and T674I F/P Imatinib resistant cells(IR) by either JAK2-specific short interfering RNA (siRNA) or the tryphostin derivative AG490(AG490), significantly reduced cellular proliferation and induced cellular apoptosis. The F/P can enhance the IL-5-induced JAK2 activation, and further results indicated that JAK2 inhibition blocked IL-5-induced cellular migration and activation of the EOL-1 and PC cells in vitro. F/P-stimulation of the JAK2 suppressed cells led to a significantly reduction in Stat3 activation, but relatively normal induction of Stat5 activation. Interestingly, JAK2 inhibition also reduced PI3K, Akt and NF-κB activity in a dose-dependent manner, and suppressed expression levels of c-Myc and Survivin. These results strongly suggest that JAK2 is activated by F/P and is required for F/P stimulation of cellular proliferation and infiltration, possibly through induction of c-Myc and Survivin expression via activation of multiple signaling pathways, including NF-κB, Stat3, and PI3K/Akt.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Division of Hematology, Institute of Molecular Hematology, the Second Xiang Ya Hospital, Central South University, Changsha City, Hunan, People's Republic of China
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Guangsen Zhang
- Division of Hematology, Institute of Molecular Hematology, the Second Xiang Ya Hospital, Central South University, Changsha City, Hunan, People's Republic of China
| | - Cui Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Dan He
- Medical Research Center, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Xinying Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chunfang Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Faqing Tang
- Clinical Laboratory, Zhuhai Hospital, Jinan University, Zhuhai, People's Republic of China
| | - Xiyun Deng
- Department of Surgery, the University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jingchen Lu
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Youhong Tang
- Division of Oncology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ruijuan Li
- Division of Hematology, Institute of Molecular Hematology, the Second Xiang Ya Hospital, Central South University, Changsha City, Hunan, People's Republic of China
| | - Zhuchu Chen
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chaojun Duan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- Medical Research Center, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- * E-mail:
| |
Collapse
|
6
|
Nilotinib and imatinib are comparably effective in reducing growth of human eosinophil leukemia cells in a newly established xenograft model. PLoS One 2012; 7:e30567. [PMID: 22348015 PMCID: PMC3279340 DOI: 10.1371/journal.pone.0030567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 12/19/2011] [Indexed: 01/18/2023] Open
Abstract
We developed a xenograft model of human Chronic Eosinophilic Leukemia (CEL) to study disease progression and remission-induction under therapy with tyrosine kinase inhibitors using imatinib and nilotinib as examples. The FIP1L1/PDGFRA+ human CEL cell lineEOL-1 was injected intravenously into scid mice, and MR imaging and FACS analysis of mouse blood samples were performed to monitor disease development and the effects of imatinib and nilotinib. Organ infiltration was analyzed in detail by immunohistochemistry after sacrifice. All animals developed CEL and within one week of therapy, complete remissions were seen with both imatinib and nilotinib, resulting in reduced total tumor volumes by MR-imaging and almost complete disappearance of EOL-1 cells in the peripheral blood and in tissues. The new model system is feasible for the evaluation of new tyrosine kinase inhibitors and our data suggest that nilotinib may be a valuable additional targeted drug active in patients with FIP1L1/PDGFRA+ CEL.
Collapse
|
7
|
Lee JS, Yang EJ, Kim IS. The roles of MCP-1 and protein kinase Cδ activation in human eosinophilic leukemia EoL-1 cells. Cytokine 2009; 48:186-95. [DOI: 10.1016/j.cyto.2009.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 06/09/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
|