1
|
Valiulienė G, Vitkevičienė A, Navakauskienė R. The epigenetic treatment remodel genome-wide histone H4 hyper-acetylation patterns and affect signaling pathways in acute promyelocytic leukemia cells. Eur J Pharmacol 2020; 889:173641. [PMID: 33045196 DOI: 10.1016/j.ejphar.2020.173641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/03/2020] [Accepted: 10/08/2020] [Indexed: 01/10/2023]
Abstract
Although majority of acute promyelocytic leukemia (APL) patients achieve complete remission after the standard treatment, 5-10% of patients are shown to relapse or develop resistance to treatment. In such cases, medications that target epigenetic processes could become an appealing supplementary approach. In this study, we tested the anti-leukemic activity of histone deacetylase inhibitor Belinostat (PXD101) and histone methyltransferase inhibitor 3-Deazaneplanocin A combined with all-trans retinoic acid in APL cells NB4, promyelocytes resembling HL-60 cells and APL patients' cells. After HL-60 and NB4 cell treatment, ChIP-sequencing was performed using antibodies against hyper-acetylated histone H4. Hyper-acetylated histone H4 distribution peaks were compared in treated vs untreated HL-60 and NB4 cells. Results demonstrated that in treated HL-60 cells, the majority of peaks were distributed within the regions of proximal promoters, whereas in treated NB4 cells, hyper-acetylated histone H4 peaks were mainly localized in gene body regions. Further ChIP-seq data analysis revealed the changes in histone H4 hyper-acetylation in promoter/gene body regions of genes involved in cancer signaling pathways. In addition, quantitative gene expression analysis proved changes in various cellular pathways important for carcinogenesis. Epigenetic treatment down-regulated the expression of MTOR, LAMTOR1, WNT2B, VEGFR3, FGF2, FGFR1, TGFA, TGFB1, TGFBR1, PDGFA, PDGFRA and PDGFRB genes in NB4, HL-60 and APL patients' cells. In addition, effect of epigenetic treatment on protein expression of aforementioned signaling pathways was confirmed with mass spectrometry analysis. Taken together, these results provide supplementary insights into molecular changes that occur during epigenetic therapy application in in vitro promyelocytic leukemia cell model.
Collapse
Affiliation(s)
- Giedrė Valiulienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania.
| | - Aida Vitkevičienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania.
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekio av. 7, LT-01257 Vilnius, Lithuania.
| |
Collapse
|
2
|
Wisnieski F, Calcagno DQ, Leal MF, Santos LC, Gigek CO, Chen ES, Demachki S, Artigiani R, Assumpção PP, Lourenço LG, Burbano RR, Smith MC. CDKN1A histone acetylation and gene expression relationship in gastric adenocarcinomas. Clin Exp Med 2015; 17:121-129. [PMID: 26567008 DOI: 10.1007/s10238-015-0400-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
CDKN1A is a tumor suppressor gene involved in gastric carcinogenesis and is a potential target for histone deacetylase inhibitor-based therapies. Upregulation of CDKN1A is generally observed in several cell lines after histone deacetylase inhibitor treatment; however, little is known about the histone acetylation status associated with this gene in clinical samples, including gastric tumor tissue samples. Therefore, our goal was to quantify the H3K9 and H4K16 acetylation levels associated with three CDKN1A regions in 21 matched pairs of gastric adenocarcinoma and corresponding adjacent non-tumor samples by chromatin immunoprecipitation and to correlate these data with the gene expression. Our results demonstrated that the -402, -20, and +182 CDKN1A regions showed a significantly increased acetylation level in at least one of the histones evaluated (p < 0.05, for all comparisons), and these levels were positively correlated in gastric tumors. However, an inverse correlation was detected between both H3K9 and H4K16 acetylation at the -402 CDKN1A region and mRNA levels in gastric tumors (r = -0.51, p = 0.02; r = -0.60, p < 0.01, respectively). Furthermore, increased H4K16 acetylation at the -20 CDKN1A region was associated with gastric tumors of patients without lymph node metastasis (p = 0.04). These results highlight the complexity of these processes in gastric adenocarcinoma and contribute to a better understanding of CDKN1A regulation in carcinogenesis.
Collapse
Affiliation(s)
- Fernanda Wisnieski
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil.
| | - Danielle Queiroz Calcagno
- Núcleo de Pesquisas em Oncologia, Hospital João de Barros Barreto, Universidade Federal do Pará, Avenida Mundurucus, 4487, Belém, 66073000, Brazil
| | - Mariana Ferreira Leal
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil
- Departamento de Ortopedia e Traumatologia, Universidade Federal de São Paulo, Rua Borges Lagoa, 783, São Paulo, 04038032, Brazil
| | - Leonardo Caires Santos
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil
| | - Carolina Oliveira Gigek
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil
| | - Elizabeth Suchi Chen
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil
| | - Sâmia Demachki
- Núcleo de Pesquisas em Oncologia, Hospital João de Barros Barreto, Universidade Federal do Pará, Avenida Mundurucus, 4487, Belém, 66073000, Brazil
| | - Ricardo Artigiani
- Departamento de Patologia, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023000, Brazil
| | - Paulo Pimentel Assumpção
- Núcleo de Pesquisas em Oncologia, Hospital João de Barros Barreto, Universidade Federal do Pará, Avenida Mundurucus, 4487, Belém, 66073000, Brazil
| | - Laércio Gomes Lourenço
- Disciplina de Gastroenterologia Cirúrgica, Departamento de Cirurgia, Universidade Federal de São Paulo, Rua Napoleão de Barros, 715, São Paulo, 04024002, Brazil
| | - Rommel Rodríguez Burbano
- Laboratório de Citogenética Humana, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correia, 01, Belém, 66075110, Brazil
| | - Marília Cardoso Smith
- Disciplina de Genética, Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Rua Botucatu, 740, São Paulo, 04023900, Brazil
| |
Collapse
|
3
|
Chueh AC, Tse JWT, Tögel L, Mariadason JM. Mechanisms of Histone Deacetylase Inhibitor-Regulated Gene Expression in Cancer Cells. Antioxid Redox Signal 2015; 23:66-84. [PMID: 24512308 PMCID: PMC4492771 DOI: 10.1089/ars.2014.5863] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Class I and II histone deacetylase inhibitors (HDACis) are approved for the treatment of cutaneous T-cell lymphoma and are undergoing clinical trials as single agents, and in combination, for other hematological and solid tumors. Understanding their mechanisms of action is essential for their more effective clinical use, and broadening their clinical potential. RECENT ADVANCES HDACi induce extensive transcriptional changes in tumor cells by activating and repressing similar numbers of genes. These transcriptional changes mediate, at least in part, HDACi-mediated growth inhibition, apoptosis, and differentiation. Here, we highlight two fundamental mechanisms by which HDACi regulate gene expression—histone and transcription factor acetylation. We also review the transcriptional responses invoked by HDACi, and compare these effects within and across tumor types. CRITICAL ISSUES The mechanistic basis for how HDACi activate, and in particular repress gene expression, is not well understood. In addition, whether subsets of genes are reproducibly regulated by these agents both within and across tumor types has not been systematically addressed. A detailed understanding of the transcriptional changes elicited by HDACi in various tumor types, and the mechanistic basis for these effects, may provide insights into the specificity of these drugs for transformed cells and specific tumor types. FUTURE DIRECTIONS Understanding the mechanisms by which HDACi regulate gene expression and an appreciation of their transcriptional targets could facilitate the ongoing clinical development of these emerging therapeutics. In particular, this knowledge could inform the design of rational drug combinations involving HDACi, and facilitate the identification of mechanism-based biomarkers of response.
Collapse
Affiliation(s)
- Anderly C Chueh
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Janson W T Tse
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Lars Tögel
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - John M Mariadason
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| |
Collapse
|
4
|
Histone deacetylases as therapeutic targets--from cancer to cardiac disease. Pharmacol Ther 2014; 147:55-62. [PMID: 25444758 DOI: 10.1016/j.pharmthera.2014.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 01/04/2023]
Abstract
Heart failure is a major public health problem in western society. Recently, agents that inhibit histone deacetylase (HDAC) enzymes were developed and approved by the FDA as anticancer agents. This breakthrough has provided the motivation to develop more potent and more selective HDAC inhibitors and to target other pathologic conditions with these drugs. Here we review experimental evidence showing that these drugs may be beneficial in preventing cardiac hypertrophy and heart failure. Several lines of evidence show that inhibitors of Class I HDACs can blunt cardiac hypertrophy and preserve cardiac function in several small animal models. In contrast, Class IIa HDACs appear to be suppressors of hypertrophy, though experimental data with small molecule blockers of this class is largely lacking. The effects of HDAC inhibition in cardiac diseases, the cell population in the heart that is targeted by HDAC blockers, as well as the relative roles of specific HDACs are still under intense investigation.
Collapse
|
5
|
Rodrigues HF, Souza TA, Ghiraldini FG, Mello MLS, Moraes AS. Increased age is associated with epigenetic and structural changes in chromatin from neuronal nuclei. J Cell Biochem 2014; 115:659-65. [PMID: 24166948 DOI: 10.1002/jcb.24705] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/22/2013] [Indexed: 01/06/2023]
Abstract
Chromatin organization has been considered to play a major role on aging, by regulating DNA accessibility to transcription and repair machinery. Such organization can be modulated by epigenetic events, such as DNA methylation and histone post-translational modifications. Since changes on gene expression profiles have been described in aged neurons, our aim was to study the age-dependent relationship between structural and epigenetic alterations on chromatin of cortical neurons from mice. For this purpose, isolated neuronal nuclei from mice of two ages were studied by image analysis after cytochemistry, or assessed for chromatin accessibility by enzymatic digestion. Additionally, two epigenetic marks, for open and for densely packed chromatin fibers were quantified. Results indicate epigenetically driven alterations on chromatin organization of cortical neurons with advancing age, whose fibers seem to undergo redistribution and unpackaging. Since increased transcriptional activity is not characteristic of aged neurons, these loosened chromatin fibers may be associated with impaired genome stability, as well as with increased accessibility of repair machinery to a life span damaged DNA.
Collapse
Affiliation(s)
- Henrique F Rodrigues
- Cytology, Histology, and Embryology Section, Institute of Biomedical Sciences, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, 38400-902, Brazil
| | | | | | | | | |
Collapse
|
6
|
Abstract
This article reviews progress in epigenetic therapies that hope to improve the treatment of cancer. Tumors show widespread, aberrant epigenetic changes, leading to changes in the expression of genes involved in all the hallmarks of cancer. These epigenetic changes can potentially be reversed using small-molecule inhibitors of enzymes involved in maintenance of the epigenetic state. DNA-demethylating agents and histone deacetylase inhibitors have shown anti-tumor activity against certain hematological malignancies; however, their activity in solid tumors remains more uncertain. Major challenges remain in delivery of epigenetic therapy, maintenance of a pharmacodynamic response and achievement of a therapeutic index. We believe histone lysine methyl transferases are a highly promising epigenetic target, which has yet to be clinically exploited. Crystallographic studies on histone lysine methyl transferases provide insights into their mechanism and specificity crucial for the design and development of small-molecule inhibitors.
Collapse
|
7
|
Transcriptional modulation of monoaminergic neurotransmission genes by the histone deacetylase inhibitor trichostatin A in neuroblastoma cells. J Neural Transm (Vienna) 2011; 119:17-24. [PMID: 21785940 DOI: 10.1007/s00702-011-0688-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 07/06/2011] [Indexed: 01/04/2023]
Abstract
Histone deacetylase inhibitors are promising anti-tumor agents partly due to their ability to disrupt the hypoxic signaling pathway in human malignancies. However, little is known about any effects of these drugs on the central nervous system. The aim of the present study was to analyze the effects of trichostatin A (TSA)--a broad-spectrum histone deacetylase inhibitor--on the transcriptional regulation of several genes involved in dopamine- and serotonergic neurotransmission. To this end, short-term parallel cultures of SK-NF-I neuroblastoma cells were treated with TSA either alone or in combination with hypoxia, and mRNA levels of dopamine receptor D3 (DRD3) and D4 (DRD4), dopamine transporter (DAT), dopamine hydroxylase (DBH), dopamine receptor regulating factor (DRRF), catechol-O-methyltransferase (COMT), serotonin receptor 1A (HTR1A), monoamino oxidase A (MAO-A), serotonin transporter (SLC6A4) and tryptophan hydroxylase 2 (TPH2) were determined by quantitative PCR. We found that TSA did not antagonize the hypoxia-induced activation of D3 and D4 dopamine receptor genes, implying that induction of these genes is not mediated directly by hypoxia inducible factor-1alpha. On the other hand, TSA dramatically upregulated the expression of DAT and SLC6A4 (45-fold and 15-fold, respectively), while transcript levels of MAO-A and COMT were significantly reduced (by 70% and by more than 90%, respectively). Induction of DAT protein expression was detected by western blotting. These results suggest that inhibition of histone deacetylases might help restore presynaptic monoamine pools via suppression of catecholamine breakdown and facilitation of monoamine reuptake in neurons.
Collapse
|
8
|
Creech CC, Neumann DM. Changes to euchromatin on LAT and ICP4 following reactivation are more prevalent in an efficiently reactivating strain of HSV-1. PLoS One 2010; 5:e15416. [PMID: 21079815 PMCID: PMC2973973 DOI: 10.1371/journal.pone.0015416] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/21/2010] [Indexed: 12/25/2022] Open
Abstract
Background Epigenetic mechanisms, via post-translational histone modifications, have roles in the establishment and maintenance of latency of the HSV-1 genome in the sensory neurons. Considering that many post-translational histone marks are reversible in nature, epigenetic mechanisms may also play a critical role in the process of induced HSV-1 reactivation. Methodology/Principal Findings This study utilized the rabbit ocular model of HSV-1 infection and reactivation, induced by the transcorneal iontophoresis of epinephrine (TCIE), to characterize changes to chromatin that occur between 0.5 and 4 h following the application of the reactivation stimulus. Our goal was to explore the hypothesis that chromatin remodeling is an early and essential step in the process of HSV-1 reactivation. Analysis of the HSV-1 latently infected rabbit trigeminal ganglia (TG) showed that enrichment of the euchromatic marker H3K4me2 significantly decreased in the LAT 5′exon region (∼2.5-fold) and significantly increased in the lytic ICP4 promoter region (∼3-fold) by 1 h post-TCIE in the highly efficient reactivating McKrae strain of HSV-1. In contrast, we observed no significant change in the euchromatic marks of H3K4me2 associated with LAT 5′exon or ICP4 promoter regions of the poorly reactivating KOS strain of HSV-1 following TCIE through 4 h. The implication that these observed epigenetic changes were linked to transcriptional activity was confirmed by qRT-PCR examining both LAT and lytic transcript abundance following TCIE. We found a significant decrease in the abundance of LAT RNA by 2 h post-iontophoresis of epinephrine coupled to an increase in the transcript abundance of ICP4 in the McKrae strain of HSV-1. By comparison, we observed no change in the LAT or ICP4 transcript abundance of the poor reactivator KOS following iontophoresis of epinephrine through 4 h. Conclusions/Significance Our results implicate that chromatin remodeling is an early and essential step involved in the process of in vivo HSV-1 reactivation.
Collapse
Affiliation(s)
- Clinton C. Creech
- Department of Ophthalmology (LSU Eye Center of Excellence), Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Donna M. Neumann
- Department of Ophthalmology (LSU Eye Center of Excellence), Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
HDAC, by modifiing relations between DNA and histones, are major proteins of the epigenetic regulation. They play part in the signal transduction and in many cellular processes: cell cycle control, apoptosis, protein degradation, angiogenesis, invasion and cell motility. In several models of cancer HDAC inhibitors (HDACIs) are able to up regulate tumor suppressing gene (p53, p21, pRB...) and to down regulate oncogenes (SRC, HIF-Ialpha,HER2...). Many inhibitors are currently in clinical development and promising results have been reported in cutaneous T cell lymphoma, Hodgkin's disease and non-hodgkin lymphoma. Combination with chemotherapy and molecular targeted agents seem to be effective in myeloma, lung cancer and myeloïd neoplasms. In this review, we focus on recent biologic and clinical data that highlitght the anti-neoplastic role of HDACIs.
Collapse
|
10
|
Brion L, Gorostizaga A, Gómez NV, Podestá EJ, Cornejo Maciel F, Paz C. Valproic acid alters mitochondrial cholesterol transport in Y1 adrenocortical cells. Toxicol In Vitro 2010; 25:7-12. [PMID: 20732403 DOI: 10.1016/j.tiv.2010.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/08/2010] [Accepted: 08/17/2010] [Indexed: 11/17/2022]
Abstract
Several reports suggest putative interactions between valproic acid (VPA) treatment and the hypothalamus-pituitary-adrenal axis. Given that VPA alters mitochondrial functions, an action of this drug on a mitochondrial process such as steroid synthesis in adrenal cells should be expected. In order to disclose a putative action of VPA on the adrenocortical cell itself we evaluated VPA effects on regulatory steps of the acute stimulation of steroidogenesis in Y1 adrenocortical cells. This study demonstrates that VPA increases progesterone production in non-stimulated cells without inducing the levels of Steroidogenic Acute Regulatory (StAR) protein, which facilitates cholesterol transport. This result suggests that VPA increases mitochondrial cholesterol transport through a StAR-independent mechanism and is further supported by the fact that in isolated mitochondria VPA stimulates exogenous cholesterol metabolization to progesterone. VPA also reduces the cAMP-mediated increase of the StAR protein, mRNA levels, promoter activity and progesterone production. In summary, the present data show that VPA can alter steroid production in adrenal cells by a complex mechanism that mainly involves an action on cholesterol access to the inner mitochondrial membrane. The VPA-mediated increase of basal steroidogenesis could be linked to the increase of basal cortisolemia described in patients under VPA treatment.
Collapse
Affiliation(s)
- L Brion
- IIHMNO-Department of Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
11
|
Tambaro FP, Dell’Aversana C, Carafa V, Nebbioso A, Radic B, Ferrara F, Altucci L. Histone deacetylase inhibitors: clinical implications for hematological malignancies. Clin Epigenetics 2010; 1:25-44. [PMID: 22704087 PMCID: PMC3365365 DOI: 10.1007/s13148-010-0006-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 07/12/2010] [Indexed: 01/19/2023] Open
Abstract
Histone modifications have widely been implicated in cancer development and progression and are potentially reversible by drug treatments. The N-terminal tails of each histone extend outward through the DNA strand containing amino acid residues modified by posttranslational acetylation, methylation, and phosphorylation. These modifications change the secondary structure of the histone protein tails in relation to the DNA strands, increasing the distance between DNA and histones, and thus allowing accessibility of transcription factors to gene promoter regions. A large number of HDAC inhibitors have been synthesized in the last few years, most being effective in vitro, inducing cancer cells differentiation or cell death. The majority of the inhibitors are in clinical trials, unlike the suberoylanilide hydroxamic acid, a pan-HDACi, and Romidepsin (FK 228), a class I-selective HDACi, which are only approved in the second line treatment of refractory, persistent or relapsed cutaneous T-cell lymphoma, and active in approximately 150 clinical trials, in monotherapy or in association. Preclinical studies investigated the use of these drugs in clinical practice, as single agents and in combination with chemotherapy, hypomethylating agents, proteasome inhibitors, and MTOR inhibitors, showing a significant effect mostly in hematological malignancies. The aim of this review is to focus on the biological features of these drugs, analyzing the possible mechanism(s) of action and outline an overview on the current use in the clinical practice.
Collapse
Affiliation(s)
- Francesco Paolo Tambaro
- Dipartimento di Patologia generale, Seconda università degli Studi di Napoli, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Carmela Dell’Aversana
- Dipartimento di Patologia generale, Seconda università degli Studi di Napoli, Vico L. De Crecchio 7, 80138 Naples, Italy
- Università di Messina, Messina, Italy
| | - Vincenzo Carafa
- Dipartimento di Patologia generale, Seconda università degli Studi di Napoli, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Nebbioso
- Dipartimento di Patologia generale, Seconda università degli Studi di Napoli, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Branka Radic
- Dipartimento di Patologia generale, Seconda università degli Studi di Napoli, Vico L. De Crecchio 7, 80138 Naples, Italy
| | - Felicetto Ferrara
- Ematologia con Trapianto di Cellule Staminali, Ospedale Cardarelli, via Cardarelli 9, 80131 Naples, Italy
| | - Lucia Altucci
- Dipartimento di Patologia generale, Seconda università degli Studi di Napoli, Vico L. De Crecchio 7, 80138 Naples, Italy
- CNR-IGB, via P. Castellino, Naples, Italy
| |
Collapse
|
12
|
Zhao JY, Lu N, Yan Z, Wang N. SAHA and curcumin combinations co-enhance histone acetylation in human cancer cells but operate antagonistically in exerting cytotoxic effects. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2010; 12:335-348. [PMID: 20496190 DOI: 10.1080/10286021003730348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Suberoylanilide hydroxamic acid (1), as well as other histone deacetylase (HDAC) inhibitors, are promising, targeted anticancer agents. Curcumin (2), a possible antitumor agent, exhibits a HDAC inhibiting effect but with a different mechanism, and was proposed to synergize with other drugs, including HDAC inhibitors. The present study was undertaken to evaluate the possible inhibitory effects of 1 and 2 combinations on the growth of nine human cancer cell lines. Drug combinations resulted in an antagonistic cytotoxic effect, as characterized by the Loewe additivity model, observed in all the cell lines. On the other hand, histone hyperacetylation was synergistically or at least additively induced by 1 and 2 combinations, in four cell lines tested. Despite the enhanced histone acetylation, 1 plus 2 produced a significant antagonism in the induced activation of downstream p21(CIP/WAF1) expression. Concomitantly, induced reactive oxygen species (ROS) production was antagonistically diminished in combinations especially at low concentration of 2. We conclude that 1 and 2 exert an antagonistic cytotoxicity on a variety of cancer cell lines, and suggest that mechanisms mediating their antagonism lie at levels of p21(CIP/WAF1) expression and ROS production, rather than at histone acetylation.
Collapse
Affiliation(s)
- Jin-Yan Zhao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
13
|
Abstract
Epigenetics is a rapidly growing field and holds great promise for a range of human diseases, including brain disorders such as Rett syndrome, anxiety and depressive disorders, schizophrenia, Alzheimer disease and Huntington disease. This review is concerned with the pharmacology of epigenetics to treat disorders of the epigenome whether induced developmentally or manifested/acquired later in life. In particular, we will focus on brain disorders and their treatment by drugs that modify the epigenome. While the use of DNA methyl transferase inhibitors and histone deacetylase inhibitors in in vitro and in vivo models have demonstrated improvements in disease-related deficits, clinical trials in humans have been less promising. We will address recent advances in our understanding of the complexity of the epigenome with its many molecular players, and discuss evidence for a compromised epigenome in the context of an ageing or diseased brain. We will also draw on examples of species differences that may exist between humans and model systems, emphasizing the need for more robust pre-clinical testing. Finally, we will discuss fundamental issues to be considered in study design when targeting the epigenome.
Collapse
Affiliation(s)
- Pritika Narayan
- Department of Pharmacology and the National Research Centre for Growth and Development, The University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
14
|
Schrump DS. Cytotoxicity mediated by histone deacetylase inhibitors in cancer cells: mechanisms and potential clinical implications. Clin Cancer Res 2009; 15:3947-57. [PMID: 19509170 DOI: 10.1158/1078-0432.ccr-08-2787] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aberrant expression of epigenetic regulators of gene expression contributes to initiation and progression of cancer. During recent years, considerable research efforts have focused on the role of histone acetyltransferases (HATs) and histone deacetylases (HDACs) in cancer cells, and the identification of pharmacologic agents that modulate gene expression via inhibition of HDACs. The following review highlights recent studies pertaining to HDAC expression in cancer cells, the plieotropic mechanisms by which HDAC inhibitors (HDACi) mediate antitumor activity, and the potential clinical implications of HDAC inhibition as a strategy for cancer therapy.
Collapse
Affiliation(s)
- David S Schrump
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-1201, USA.
| |
Collapse
|
15
|
Spange S, Wagner T, Heinzel T, Krämer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 2008; 41:185-98. [PMID: 18804549 DOI: 10.1016/j.biocel.2008.08.027] [Citation(s) in RCA: 532] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 12/27/2022]
Abstract
This review focuses on the posttranslational acetylation of non-histone proteins, which determines vital regulatory processes. The recruitment of histone acetyltransferases and histone deacetylases to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation and differentiation. A steadily growing number of identified acetylated non-histone proteins demonstrate that reversible lysine acetylation affects mRNA stability, and the localisation, interaction, degradation and function of proteins. Interestingly, most non-histone proteins targeted by acetylation are relevant for tumourigenesis, cancer cell proliferation and immune functions. Therefore inhibitors of histone deacetylases are considered as candidate drugs for cancer therapy. Histone deacetylase inhibitors alter histone acetylation and chromatin structure, which modulates gene expression, as well as promoting the acetylation of non-histone proteins. Here, we summarise the complex effects of dynamic alterations in the cellular acetylome on physiologically relevant pathways.
Collapse
Affiliation(s)
- Stephanie Spange
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany.
| | | | | | | |
Collapse
|