1
|
Calreticulin Regulates β1-Integrin mRNA Stability in PC-3 Prostate Cancer Cells. Biomedicines 2022; 10:biomedicines10030646. [PMID: 35327448 PMCID: PMC8944996 DOI: 10.3390/biomedicines10030646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Prostate cancer (PCa) is the major cause of cancer-related death among aging men worldwide. Recent studies have suggested that calreticulin (CRT), a multifunctional chaperon protein, may play an important role in the regulation of PCa tumorigenesis and progression. However, the underlying mechanisms are still unclear. Integrin is an important regulator of cancer metastasis. Our previous study demonstrated that in J82 bladder cancer cells, CRT affects integrin activity through FUBP-1-FUT-1-dependent fucosylation, rather than directly affecting the expression of β1-integrin itself. However, whether this regulatory mechanism is conserved among different cell types remains to be determined. Herein, we attempted to determine the effects of CRT on β1-integrin in human prostate cancer PC-3 cells. CRT expression was suppressed in PC-3 cells through siRNA treatment, and then the expression levels of FUT-1 and β1-integrin were monitored through RT-PCR. We found that knockdown of CRT expression in PC-3 cells significantly affected the expression of β1-integrin itself. In addition, the lower expression level of β1-integrin was due to affecting the mRNA stability. In contrast, FUT-1 expression level was not affected by knockdown of CRT. These results strongly suggested that CRT regulates cellular behavior differently in different cell types. We further confirmed that CRT directly binds to the 3′UTR of β1-integrin mRNA by EMSA and therefore affects its stability. The suppression of CRT expression also affects PC-3 cell adhesion to type I collagen substrate. In addition, the levels of total and activated β1-integrin expressed on cell surface were both significantly suppressed by CRT knockdown. Furthermore, the intracellular distribution of β1-integrin was also affected by lowering the expression of CRT. This change in distribution is not lysosomal nor proteosomal pathway-dependent. The treatment of fucosydase significantly affected the activation of surface β1-integrin, which is conserved among different cell types. These results suggested that CRT affects the expression of β1-integrin through distinct regulatory mechanisms.
Collapse
|
2
|
Wu PY, Lin YC, Huang YL, Chen WM, Chen CC, Lee H. Mechanisms of Lysophosphatidic Acid-Mediated Lymphangiogenesis in Prostate Cancer. Cancers (Basel) 2018; 10:cancers10110413. [PMID: 30384405 PMCID: PMC6266502 DOI: 10.3390/cancers10110413] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the most common noncutaneous cancer in men worldwide. One of its major treatments is androgen deprivation therapy, but PCa frequently relapses as aggressive castration resistant local tumors and distal metastases. Hence, the development of novel agents or treatment modalities for advanced PCa is crucial. Many tumors, including PCa, first metastasize to regional lymph nodes via lymphatic vessels. Recent findings demonstrate that the bioactive lipid lysophosphatidic acid (LPA) promotes PCa progression by regulating vascular endothelial growth factor-C (VEGF-C), a critical mediator of tumor lymphangiogenesis and lymphatic metastasis. Many of the underlying molecular mechanisms of the LPA–VEGF-C axis have been described, revealing potential biomarkers and therapeutic targets that may aid in the diagnosis and treatment of advanced PCa. Herein, we review the literature that illustrates a functional role for LPA signaling in PCa progression. These discoveries may be especially applicable to anti-lymphangiogenic strategies for the prevention and therapy of metastatic PCa.
Collapse
Affiliation(s)
- Pei-Yi Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Yueh-Chien Lin
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan.
| | - Yuan-Li Huang
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Min Chen
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan.
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan.
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| | - Hsinyu Lee
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan.
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan.
- Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.
- Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
3
|
Lin YC, Chen CC, Chen WM, Lu KY, Shen TL, Jou YC, Shen CH, Ohbayashi N, Kanaho Y, Huang YL, Lee H. LPA 1/3 signaling mediates tumor lymphangiogenesis through promoting CRT expression in prostate cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1305-1315. [PMID: 30053596 DOI: 10.1016/j.bbalip.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid growth factor which is present in high levels in serum and platelets. LPA binds to its specific G-protein-coupled receptors, including LPA1 to LPA6, thereby regulating various physiological functions, including cancer growth, angiogenesis, and lymphangiogenesis. Our previous study showed that LPA promotes the expression of the lymphangiogenic factor vascular endothelial growth factor (VEGF)-C in prostate cancer (PCa) cells. Interestingly, LPA has been shown to regulate the expression of calreticulin (CRT), a multifunctional chaperone protein, but the roles of CRT in PCa progression remain unclear. Here we investigated the involvement of CRT in LPA-mediated VEGF-C expression and lymphangiogenesis in PCa. Knockdown of CRT significantly reduced LPA-induced VEGF-C expression in PC-3 cells. Moreover, LPA promoted CRT expression through LPA receptors LPA1 and LPA3, reactive oxygen species (ROS) production, and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). Tumor-xenografted mouse experiments further showed that CRT knockdown suppressed tumor growth and lymphangiogenesis. Notably, clinical evidence indicated that the LPA-producing enzyme autotaxin (ATX) is related to CRT and that CRT level is highly associated with lymphatic vessel density and VEGF-C expression. Interestingly, the pharmacological antagonist of LPA receptors significantly reduced the lymphatic vessel density in tumor and lymph node metastasis in tumor-bearing nude mice. Together, our results demonstrated that CRT is critical in PCa progression through the mediation of LPA-induced VEGF-C expression, implying that targeting the LPA signaling axis is a potential therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Yueh-Chien Lin
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan; Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Chien-Chin Chen
- Department of Pathology, Chia-Yi Christian Hospital, Chiayi 600, Taiwan; Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Wei-Min Chen
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Kuan-Ying Lu
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | - Yeong-Chin Jou
- Department of Urology, Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Chia-Yi Christian Hospital, Chiayi 600, Taiwan
| | - Norihiko Ohbayashi
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yasunori Kanaho
- Department of Physiological Chemistry, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuan-Li Huang
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Hsinyu Lee
- Department of Life Sciences, National Taiwan University, Taipei 10617, Taiwan; Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan; Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan; Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
4
|
Aberrant Glycosylation Augments the Immuno-Stimulatory Activities of Soluble Calreticulin. Molecules 2018; 23:molecules23030523. [PMID: 29495436 PMCID: PMC6017544 DOI: 10.3390/molecules23030523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/29/2022] Open
Abstract
Calreticulin (CRT), a luminal resident calcium-binding glycoprotein of the cell, is a tumor-associated antigen involved in tumorigenesis and also an autoantigen targeted by autoantibodies found in patients with various autoimmune diseases. We have previously shown that prokaryotically expressed recombinant murine CRT (rCRT) exhibits strong stimulatory activities against monocytes/macrophages in vitro and potent immunogenicity in vivo, which is partially attributable to self-oligomerization of soluble rCRT. However, even in oligomerized form native CRT (nCRT) isolated from mouse liver is much less active than rCRT, arguing against the possibility that self-oligomerization alone would license potent pro-inflammatory properties to nCRT. Since rCRT differs from nCRT in its lack of glycosylation, we wondered if aberrant glycosylation of eukaryotically expressed CRT (eCRT) would significantly enhance its immunological activity. In the present study, tunicamycin, an N-glycosyltransferase inhibitor, was employed to treat CHO cells (CHO-CRT) stably expressing full-length recombinant mouse CRT in secreted form for preparation of aberrantly glycosylated eCRT (tun-eCRT). Our biochemical and immunological analysis results indicate that eCRT produced by CHO-CRT cells is similar to nCRT in terms of glycosylation level, lack of self-oligomerization, relatively poor immunogenicity and weak macrophage-stimulatory activity, while tun-eCRT shows reduced glycosylation yet much enhanced ability to elicit specific humoral responses in mice and TNF-α and nitric oxide production by macrophages in vitro. Given that abberant glycosylation of proteins is a hallmark of cancer cells and also related to the development of autoimmune disorders in humans, our data may provide useful clues for better understanding of potentiating roles of dysregulated glycosylation of molecules such as CRT in tumorigenesis and autoimmunity.
Collapse
|
5
|
Migliaccio AR, Uversky VN. Dissecting physical structure of calreticulin, an intrinsically disordered Ca 2+-buffering chaperone from endoplasmic reticulum. J Biomol Struct Dyn 2017; 36:1617-1636. [PMID: 28504081 DOI: 10.1080/07391102.2017.1330224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Calreticulin (CALR) is a Ca2+ binding multifunctional protein that mostly resides in the endoplasmic reticulum (ER) and plays a number of important roles in various physiological and pathological processes. Although the major functions ascribed to CALR are controlling the Ca2+ homeostasis in ER and acting as a lectin-like ER chaperon for many glycoproteins, this moonlighting protein can be found in various cellular compartments where it has many non-ER functions. To shed more light on the mechanisms underlying polyfunctionality of this moonlighting protein that can be found in different cellular compartments and that possesses a wide spectrum of unrelated biological activities, being able to interact with Ca2+ (and potentially other metal ions), RNA, oligosaccharides, and numerous proteins, we used a set of experimental and computational tools to evaluate the intrinsic disorder status of CALR and the role of calcium binding on structural properties and conformational stability of the full-length CALR and its isolated P- and C-domains.
Collapse
Affiliation(s)
- Anna Rita Migliaccio
- a Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS) , New York , NY , USA.,b Department of Biomedical and Neuromotorial Sciences , Alma Mater University , Bologna , Italy
| | - Vladimir N Uversky
- c Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine, University of South Florida , Tampa , FL , USA.,d Laboratory of New Methods in Biology , Institute for Biological Instrumentation, Russian Academy of Sciences , Pushchino , Moscow Region 142290 , Russia
| |
Collapse
|
6
|
Backlund M, Paukku K, Kontula KK, Lehtonen JYA. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism. Nucleic Acids Res 2015; 44:3095-104. [PMID: 26681690 PMCID: PMC4838341 DOI: 10.1093/nar/gkv1368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/25/2015] [Indexed: 02/06/2023] Open
Abstract
As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3'-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner.
Collapse
Affiliation(s)
- Michael Backlund
- Department of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Kirsi Paukku
- Department of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland
| | - Kimmo K Kontula
- Department of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland Helsinki University Hospital, Helsinki, FIN-00029, Finland
| | - Jukka Y A Lehtonen
- Department of Medicine, University of Helsinki, Helsinki, FIN-00014, Finland Heart and Lung Center, Department of Cardiology, Helsinki University Central Hospital, Helsinki, FIN-00029, Finland
| |
Collapse
|
7
|
RECEPTORES NUCLEARES: DEL NÚCLEO AL CITOPLASMA. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2015. [DOI: 10.1016/j.recqb.2015.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
8
|
Caramelo JJ, Parodi AJ. A sweet code for glycoprotein folding. FEBS Lett 2015; 589:3379-87. [PMID: 26226420 DOI: 10.1016/j.febslet.2015.07.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022]
Abstract
Glycoprotein synthesis is initiated in the endoplasmic reticulum (ER) lumen upon transfer of a glycan (Glc3Man9GlcNAc2) from a lipid derivative to Asn residues (N-glycosylation). N-Glycan-dependent quality control of glycoprotein folding in the ER prevents exit to Golgi of folding intermediates, irreparably misfolded glycoproteins and incompletely assembled multimeric complexes. It also enhances folding efficiency by preventing aggregation and facilitating formation of proper disulfide bonds. The control mechanism essentially involves four components, resident lectin-chaperones (calnexin and calreticulin) that recognize monoglucosylated polymannose protein-linked glycans, lectin-associated oxidoreductase acting on monoglucosylated glycoproteins (ERp57), a glucosyltransferase that creates monoglucosylated epitopes in protein-linked glycans (UGGT) and a glucosidase (GII) that removes the glucose units added by UGGT. This last enzyme is the only mechanism component sensing glycoprotein conformations as it creates monoglucosylated glycans exclusively in not properly folded glycoproteins or in not completely assembled multimeric glycoprotein complexes. Glycoproteins that fail to properly fold are eventually driven to proteasomal degradation in the cytosol following the ER-associated degradation pathway, in which the extent of N-glycan demannosylation by ER mannosidases play a relevant role in the identification of irreparably misfolded glycoproteins.
Collapse
Affiliation(s)
- Julio J Caramelo
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avda. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| | - Armando J Parodi
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Avda. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| |
Collapse
|
9
|
Gao X, Shi X, Fu X, Ge L, Zhang Y, Su C, Yang X, Silvennoinen O, Yao Z, He J, Wei M, Yang J. Human Tudor staphylococcal nuclease (Tudor-SN) protein modulates the kinetics of AGTR1-3'UTR granule formation. FEBS Lett 2014; 588:2154-61. [PMID: 24815690 DOI: 10.1016/j.febslet.2014.04.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
Abstract
Human Tudor staphylococcal nuclease (Tudor-SN) interacts with the G3BP protein and is recruited into stress granules (SGs), the main type of discrete RNA-containing cytoplasmic foci structure that is formed under stress conditions. Here, we further demonstrate that Tudor-SN binds and co-localizes with AGTR1-3'UTR (3'-untranslated region of angiotensin II receptor, type 1 mRNA) into SG. Tudor-SN plays an important role in the assembly of AGTR1-3'UTR granules. Moreover, endogenous Tudor-SN knockdown can decrease the recovery kinetics of AGTR1-3'UTR granules. Collectively, our data indicate that Tudor-SN modulates the kinetics of AGTR1-3'UTR granule formation, which provides an additional biological role of Tudor-SN in RNA metabolism during stress.
Collapse
Affiliation(s)
- Xingjie Gao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Xuebin Shi
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Xue Fu
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Lin Ge
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Chao Su
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Xi Yang
- Department of Immunology, University of Manitoba, 471 Apotex Centre, 750 McDermot Avenue, Winnipeg R3E 0T5, Canada
| | - Olli Silvennoinen
- Institute of Medical Technology, University of Tampere, Tampere University Hospital, Biokatu 8, FI-33014 Tampere, Finland
| | - Zhi Yao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Jinyan He
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China
| | - Minxin Wei
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin 300070, China.
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Laboratory of Molecular Immunology, Research Center of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China; Key Laboratory of Educational Ministry of China, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
10
|
Byrne JC, Ní Gabhann J, Stacey KB, Coffey BM, McCarthy E, Thomas W, Jefferies CA. Bruton's tyrosine kinase is required for apoptotic cell uptake via regulating the phosphorylation and localization of calreticulin. THE JOURNAL OF IMMUNOLOGY 2013; 190:5207-15. [PMID: 23596312 DOI: 10.4049/jimmunol.1300057] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In addition to regulating B cell development and activation, Bruton's tyrosine kinase (Btk) functions downstream of multiple TLRs, including TLR7, to regulate innate immune responses in myeloid cells. Although critical for defense against RNA viruses such as influenza and Sendai virus, recognition of self-RNA by TLR7 also has been shown to be an important contributor to the pathophysiology of systemic lupus erythematosus. To date, the role of Btk in regulating TLR7-mediated responses is poorly understood. In the current study, we have demonstrated a hitherto undiscovered role for Btk in apoptotic cell uptake, identifying the molecular chaperone calreticulin (CRT) as a novel substrate for Btk in regulating this response. CRT together with the transmembrane receptor CD91 function at the cell membrane and regulate uptake of C1q-opsonised apoptotic cells. Our results show that Btk directly phosphorylates CRT and that in the absence of Btk, CRT fails to localize with CD91 at the cell surface and at the phagocytic cup. Critically, a blocking Ab against CRT in wild-type macrophages mimics the inability of Btk-deficient macrophages to phagocytose apoptotic cells efficiently, indicating the critical importance of Btk in regulating CRT-driven apoptotic cell uptake. Our data have revealed a novel regulatory role for Btk in mediating apoptotic cell clearance, with CRT identified as the critical component of the CRT/CD91/C1q system targeted by Btk. Given the importance of clearing apoptotic cell debris to prevent inappropriate exposure of TLRs to endogenous ligands, our results have important implications regarding the role of Btk in myeloid cell function.
Collapse
Affiliation(s)
- Jennifer C Byrne
- Molecular and Cellular Therapeutics and RCSI Research Institute, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
11
|
Klein J, Jupp S, Moulos P, Fernandez M, Buffin‐Meyer B, Casemayou A, Chaaya R, Charonis A, Bascands J, Stevens R, Schanstra JP. The KUPKB: a novel Web application to access multiomics data on kidney disease. FASEB J 2012; 26:2145-53. [DOI: 10.1096/fj.11-194381] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Julie Klein
- Institut National de la Santé et de la Recherche Médicale, U1048Institut of Cardiovascular and Metabolic DiseaseToulouseFrance
- Université Toulouse III Paul‐SabatierToulouseFrance
| | - Simon Jupp
- School of Computer ScienceUniversity of ManchesterManchesterUK
| | - Panagiotis Moulos
- Institut National de la Santé et de la Recherche Médicale, U1048Institut of Cardiovascular and Metabolic DiseaseToulouseFrance
- Université Toulouse III Paul‐SabatierToulouseFrance
| | - Myriem Fernandez
- Institut National de la Santé et de la Recherche Médicale, U1048Institut of Cardiovascular and Metabolic DiseaseToulouseFrance
- Université Toulouse III Paul‐SabatierToulouseFrance
| | - Bénédicte Buffin‐Meyer
- Institut National de la Santé et de la Recherche Médicale, U1048Institut of Cardiovascular and Metabolic DiseaseToulouseFrance
- Université Toulouse III Paul‐SabatierToulouseFrance
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale, U1048Institut of Cardiovascular and Metabolic DiseaseToulouseFrance
- Université Toulouse III Paul‐SabatierToulouseFrance
| | - Rana Chaaya
- Institut National de la Santé et de la Recherche Médicale, U1048Institut of Cardiovascular and Metabolic DiseaseToulouseFrance
- Université Toulouse III Paul‐SabatierToulouseFrance
| | - Aristidis Charonis
- Section of HistologyCenter for Basic Research I, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Jean‐Loup Bascands
- Institut National de la Santé et de la Recherche Médicale, U1048Institut of Cardiovascular and Metabolic DiseaseToulouseFrance
- Université Toulouse III Paul‐SabatierToulouseFrance
| | - Robert Stevens
- School of Computer ScienceUniversity of ManchesterManchesterUK
| | - Joost P. Schanstra
- Institut National de la Santé et de la Recherche Médicale, U1048Institut of Cardiovascular and Metabolic DiseaseToulouseFrance
- Université Toulouse III Paul‐SabatierToulouseFrance
| |
Collapse
|
12
|
Endoplasmic reticulum calcium regulates the retrotranslocation of Trypanosoma cruzi calreticulin to the cytosol. PLoS One 2010; 5. [PMID: 20957192 PMCID: PMC2950133 DOI: 10.1371/journal.pone.0013141] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/08/2010] [Indexed: 11/19/2022] Open
Abstract
For most secretory pathway proteins, crossing the endoplasmic reticulum (ER) membrane is an irreversible process. However, in some cases this flow can be reversed. For instance, misfolded proteins retained in the ER are retrotranslocated to the cytosol to be degraded by the proteasome. This mechanism, known as ER associated degradation (ERAD), is exploited by several bacterial toxins to gain access to the cytosol. Interestingly, some ER resident proteins can also be detected in the cytosol or nucleus, calreticulin (CRT) being the most studied. Here we show that in Trypanosoma cruzi a minor fraction of CRT localized to the cytosol. ER calcium depletion, but not increasing cytosolic calcium, triggered the retrotranslocation of CRT in a relatively short period of time. Cytosolic CRT was subsequently degraded by the proteasome. Interestingly, the single disulfide bridge of CRT is reduced when the protein is located in the cytosol. The effect exerted by ER calcium was strictly dependent on the C-terminal domain (CRT-C), since a CRT lacking it was totally retained in the ER, whereas the localization of an unrelated protein fused to CRT-C mirrored that of endogenous CRT. This finding expands the regulatory mechanisms of protein sorting and may represent a new crossroad between diverse physiological processes.
Collapse
|
13
|
Cristina Castañeda-Patlán M, Razo-Paredes R, Carrisoza-Gaytán R, González-Mariscal L, Robles-Flores M. Protein kinase C is involved in the regulation of several calreticulin posttranslational modifications. Int J Biochem Cell Biol 2010; 42:120-31. [DOI: 10.1016/j.biocel.2009.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 09/22/2009] [Accepted: 09/25/2009] [Indexed: 11/15/2022]
|
14
|
Mueller CFH, Berger A, Zimmer S, Tiyerili V, Nickenig G. The heterogenous nuclear riboprotein S1-1 regulates AT1 receptor gene expression via transcriptional and posttranscriptional mechanisms. Arch Biochem Biophys 2009; 488:76-82. [PMID: 19508861 DOI: 10.1016/j.abb.2009.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 11/18/2022]
Abstract
The AT1 receptor plays an essential role in the pathogenesis of atherosclerosis. AT1 receptor expression is predominately mediated via mRNA destabilization by mRNA binding proteins. We identified via MALDI-analysis the heterogenous nuclear riboprotein S1-1 as an important regulator of AT1 receptor mRNA stability. The S1-1 protein possesses multiple nucleolar and cellular functions in vascular smooth muscle cells (VSMC). Overexpression of S1-1 sense resulted in VSMC in significant stabilization of AT1 receptor mRNA. However, this stabilization of the AT1 receptor mRNA is accompanied by a significantly reduced AT1 receptor mRNA transcription as shown via nuclear run-on assay resulting finally in reduced AT1 receptor mRNA levels. Additionally, S1-1 overexpression leads to increased apoptosis in VSMC and decreases VSMC proliferation.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- 3' Untranslated Regions/metabolism
- Angiotensin II/metabolism
- Animals
- Apoptosis/genetics
- Cell Proliferation
- Down-Regulation
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Receptor, Angiotensin, Type 1/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Cornelius F H Mueller
- Medizinische Klinik und Poliklinik II, Innere Medizin, Universitätsklinikum Bonn, Bonn, Germany.
| | | | | | | | | |
Collapse
|
15
|
Liu X, Shen J, Zhan R, Wang X, Wang X, Zhang Z, Leng X, Yang Z, Qian L. Proteomic analysis of homocysteine induced proliferation of cultured neonatal rat vascular smooth muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:177-84. [DOI: 10.1016/j.bbapap.2008.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/08/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
|