1
|
Sheng Q, Liu A, Yang P, Chen Z, Wang P, Sun H, Li C, McMinn A, Chen Y, Zhang Y, Su H, Chen X, Zhang Y. The FilZ Protein Contains a Single PilZ Domain and Facilitates the Swarming Motility of Pseudoalteromonas sp. SM9913. Microorganisms 2023; 11:1566. [PMID: 37375068 DOI: 10.3390/microorganisms11061566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Swarming regulation is complicated in flagellated bacteria, especially those possessing dual flagellar systems. It remains unclear whether and how the movement of the constitutive polar flagellum is regulated during swarming motility of these bacteria. Here, we report the downregulation of polar flagellar motility by the c-di-GMP effector FilZ in the marine sedimentary bacterium Pseudoalteromonas sp. SM9913. Strain SM9913 possesses two flagellar systems, and filZ is located in the lateral flagellar gene cluster. The function of FilZ is negatively controlled by intracellular c-di-GMP. Swarming in strain SM9913 consists of three periods. Deletion and overexpression of filZ revealed that, during the period when strain SM9913 expands quickly, FilZ facilitates swarming. In vitro pull-down and bacterial two-hybrid assays suggested that, in the absence of c-di-GMP, FilZ interacts with the CheW homolog A2230, which may be involved in the chemotactic signal transduction pathway to the polar flagellar motor protein FliMp, to interfere with polar flagellar motility. When bound to c-di-GMP, FilZ loses its ability to interact with A2230. Bioinformatic investigation indicated that filZ-like genes are present in many bacteria with dual flagellar systems. Our findings demonstrate a novel mode of regulation of bacterial swarming motility.
Collapse
Affiliation(s)
- Qi Sheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Peiling Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zhuowei Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Peng Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Haining Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chunyang Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Andrew McMinn
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7005, Australia
| | - Yin Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Yuzhong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hainan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiulan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yuqiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
3
|
de Araújo HWC, de Freitas Siva MC, Lins CIM, do Nascimento AE, da Silva CAA, Campos-Takaki GM. Oxidation of dibenzothiophene (DBT) by Serratia marcescens UCP 1549 formed biphenyl as final product. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:33. [PMID: 22583489 PMCID: PMC3503566 DOI: 10.1186/1754-6834-5-33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/16/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND The desulphurization of dibenzothiophene (DBT), a recalcitrant thiophenic fossil fuel component by Serratia marcescens (UCP 1549) in order for reducing the Sulphur content was investigated. The Study was carried out establishing the growth profile using Luria Bertani medium to different concentrations of DBT during 120 hours at 28°C, and orbital Shaker at 150 rpm. RESULTS The results indicated that concentrations of DBT 0.5, 1.0 and 2.0 mM do not affected the growth of the bacterium. The DBT showed similar Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MCB) (3.68 mM). The desulphurization of DBT by S. marcescens was used with 96 hours of growth on 2 mM of DBT, and was determined by gas chromatography (GC) and GC-mass spectrometry. In order to study the desulphurization process by S. marcescens was observed the presence of a sulfur-free product at 16 hours of cultivation. CONCLUSIONS The data suggests the use of metabolic pathway "4S" by S. marcescens (UCP 1549) and formed biphenyl. The microbial desulphurization process by Serratia can be suggest significant reducing sulphur content in DBT, and showed promising potential for reduction of the sulfur content in diesel oil.
Collapse
Affiliation(s)
- Hélvia W Casullo de Araújo
- Departamento de Química, Universidade Estadual da Paraíba (UEPB), Campina Grande, PB, 58429-500, Brazil
- Núcleo de Pesquisas em Ciências Ambientais (NPCIAMB), Universidade Católica de Pernambuco (UNICAP), Recife, PE, 50.050-900, Brazil
| | - Marta Cristina de Freitas Siva
- Núcleo de Pesquisas em Ciências Ambientais (NPCIAMB), Universidade Católica de Pernambuco (UNICAP), Recife, PE, 50.050-900, Brazil
| | - Clarissa I Matos Lins
- Núcleo de Pesquisas em Ciências Ambientais (NPCIAMB), Universidade Católica de Pernambuco (UNICAP), Recife, PE, 50.050-900, Brazil
- Doutorado em Engenharia Química, Faculdade de Engenharia Química, Universidade Estadual de Campinas, Campinas, SP, 13083-970, Brazil
| | - Aline Elesbão do Nascimento
- Núcleo de Pesquisas em Ciências Ambientais (NPCIAMB), Universidade Católica de Pernambuco (UNICAP), Recife, PE, 50.050-900, Brazil
| | - Carlos Alberto Alves da Silva
- Núcleo de Pesquisas em Ciências Ambientais (NPCIAMB), Universidade Católica de Pernambuco (UNICAP), Recife, PE, 50.050-900, Brazil
- Departamento de Química, Universidade Católica de Pernambuco (UNICAP), Recife, PE, 50.050-900, Brazil
| | - Galba M Campos-Takaki
- Núcleo de Pesquisas em Ciências Ambientais (NPCIAMB), Universidade Católica de Pernambuco (UNICAP), Recife, PE, 50.050-900, Brazil
- Departamento de Química, Universidade Católica de Pernambuco (UNICAP), Recife, PE, 50.050-900, Brazil
| |
Collapse
|
4
|
Horng YT, Chien CC, Wei YH, Chen SY, Lan JW, Sun YM, Soo PC. Functional cis-expression of phaCAB genes for poly(3-hydroxybutyrate) production by Escherichia coli. Lett Appl Microbiol 2011; 52:475-83. [DOI: 10.1111/j.1472-765x.2011.03029.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Sheu BC, Lin CC, Fu YH, Lee SY, Lai HC, Wu RS, Liu CH, Tsai JC, Lin S. Unraveling the role of the rssC gene of Serratia marcescens by atomic force microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2010; 16:755-763. [PMID: 20961481 DOI: 10.1017/s1431927610093943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The product and direct role of the rssC gene of Serratia marcescens is unknown. For unraveling the role of the rssC gene, atomic force microscopy has been used to identify the surfaces of intact S. marcescens wild-type CH-1 cells and rssC mutant CH-1ΔC cells. The detailed surface topographies were directly visualized, and quantitative measurements of the physical properties of the membrane structures were provided. CH-1 and CH-1ΔC cells were observed before and after treatment with lysozyme, and their topography-related parameters, e.g., a valley-to-peak distance, mean height, surface roughness, and surface root-mean-square values, were defined and compared. The data obtained suggest that the cellular surface topography of mutant CH-1ΔC becomes rougher and more precipitous than that of wild-type CH-1 cells. Moreover, it was found that, compared with native wild-type CH-1, the cellular surface topography of lysozyme-treated CH-1 was not changed profoundly. The product of the rssC gene is thus predicted to be mainly responsible for fatty-acid biosynthesis of the S. marcescens outer membrane. This study represents the first direct observation of the structural changes in membranes of bacterial mutant cells and offers a new prospect for predicting gene expression in bacterial cells.
Collapse
Affiliation(s)
- Bor-Ching Sheu
- Department of Obstetrics and Gynecology, National Taiwan University, Taipei, 100-51, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|