1
|
Chetwynd SA, Ward RJ, Milligan G, Welch HCE. The GPCR adaptor protein Norbin controls the trafficking of C5aR1 and CXCR4 in mouse neutrophils. J Biol Chem 2024; 300:107940. [PMID: 39476960 DOI: 10.1016/j.jbc.2024.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024] Open
Abstract
Norbin (Neurochondrin, NCDN) is a G protein-coupled receptor (GPCR) adaptor protein known for its importance in neuronal function. Norbin works by binding to numerous GPCRs, controlling their steady-state trafficking and sometimes their agonist-induced internalization, as well as their signaling. We recently showed that Norbin is expressed in neutrophils, limits the surface levels of the GPCRs C5aR1 and CXCR4 in neutrophils, and suppresses neutrophil-mediated innate immunity. Here, we identify C5aR1 and CXCR4 as direct Norbin interactors and used mice with myeloid-Norbin deficiency to investigate the role of Norbin in the trafficking of endogenous C5aR1 and CXCR4 in primary neutrophils by flow cytometry and cell fractionation. We show that Norbin mediates the agonist-induced internalization of C5aR1 through a β-arrestin-dependent mechanism and limits the recycling of internalized C5aR1 and CXCR4 back to the cell surface. Norbin does not control the constitutive internalization of C5aR1 and CXCR4 nor does it affect the agonist-induced internalization of CXCR4. Norbin suppresses C5aR1 signaling in mouse neutrophils by limiting the C5a-stimulated membrane translocation of Tiam1, Vav, and PKCδ, and activation of Erk and p38 Mapk pathways, as well as Gαi-dependent reactive oxygen species production. Our study demonstrates how Norbin suppresses C5aR1 and CXCR4 function in neutrophils and increases our understanding of the mechanisms through which Norbin regulates GPCR trafficking generally, by identifying its importance in β-arrestin recruitment, β-arrestin dependent agonist-induced receptor internalization, and receptor recycling.
Collapse
Affiliation(s)
- Stephen A Chetwynd
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Richard J Ward
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Graeme Milligan
- Centre for Translational Pharmacology, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Heidi C E Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
2
|
Johansen VBI, Hampson E, Tsonou E, Pantarelli C, Chu JY, Crossland L, Okkenhaug H, Massey AJ, Hornigold DC, Welch HCE, Chetwynd SA. The GPCR adaptor protein Norbin regulates S1PR1 trafficking and the morphology, cell cycle and survival of PC12 cells. Sci Rep 2023; 13:18237. [PMID: 37880240 PMCID: PMC10600135 DOI: 10.1038/s41598-023-45148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Norbin is an adaptor protein that binds numerous G protein-coupled receptors (GPCRs), is highly expressed in neurons, and is essential for a functioning nervous system in rodent models. Yet, beyond its control of neurite outgrowth and synaptic plasticity, few cellular roles of Norbin have been investigated to date. Furthermore, while Norbin is known to regulate the steady-state cell surface levels of several GPCRs, only in one case has the protein been shown to control the agonist-induced receptor internalisation which serves to attenuate GPCR signalling. Here, we generated a Norbin-deficient PC12 cell line which enabled us to study both the cellular functions of Norbin and its roles in GPCR trafficking and signalling. We show that Norbin limits cell size and spreading, and is required for the growth, viability and cell cycle progression of PC12 cells. We also found that Norbin regulates both the steady-state surface level and agonist-induced internalisation of the GPCR sphingosine-1-phosphate receptor 1 (S1PR1) in these cells, suggesting that its role in agonist-dependent GPCR trafficking is more widespread than previously appreciated. Finally, we show that Norbin limits the S1P-stimulated activation of Akt and p38 Mapk, and is required for the activation of Erk in PC12 cells. Together, our findings provide a better understanding of the cellular functions of Norbin and its control of GPCR trafficking.
Collapse
Affiliation(s)
- Valdemar B I Johansen
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elizabeth Hampson
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Vernalis (R&D) Ltd., Cambridge, UK
| | - Elpida Tsonou
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Chiara Pantarelli
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Julia Y Chu
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Laraine Crossland
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | | | | | - David C Hornigold
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Heidi C E Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Stephen A Chetwynd
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
3
|
Chetwynd SA, Andrews S, Inglesfield S, Delon C, Ktistakis NT, Welch HCE. Functions and mechanisms of the GPCR adaptor protein Norbin. Biochem Soc Trans 2023; 51:1545-1558. [PMID: 37503670 PMCID: PMC10586782 DOI: 10.1042/bst20221349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Norbin (Neurochondrin, NCDN) is a highly conserved 79 kDa adaptor protein that was first identified more than a quarter of a century ago as a gene up-regulated in rat hippocampus upon induction of long-term potentiation. Most research has focussed on the role of Norbin in the nervous system, where the protein is highly expressed. Norbin regulates neuronal morphology and synaptic plasticity, and is essential for normal brain development and homeostasis. Dysregulation of Norbin is linked to a variety of neurological conditions. Recently, Norbin was shown to be expressed in myeloid cells as well as neurons. Myeloid-cell specific deletion revealed an important role of Norbin as a suppressor of neutrophil-derived innate immunity. Norbin limits the ability of neutrophils to clear bacterial infections by curbing the responsiveness of these cells to inflammatory and infectious stimuli. Mechanistically, Norbin regulates cell responses through binding to its interactors, in particular to a wide range of G protein-coupled receptors (GPCRs). Norbin association with GPCRs controls GPCR trafficking and signalling. Other important Norbin interactors are the Rac guanine-nucleotide exchange factor P-Rex1 and protein kinase A. Downstream signalling pathways regulated by Norbin include ERK, Ca2+ and the small GTPase Rac. Here, we review the current understanding of Norbin structure, expression and its roles in health and disease. We also explore Norbin signalling through its interactors, with a particular focus on GPCR trafficking and signalling. Finally, we discuss avenues that could be pursued in the future to increase our understanding of Norbin biology.
Collapse
Affiliation(s)
| | - Simon Andrews
- Bioinformatics Facility, Babraham Institute, Cambridge, U.K
| | | | | | | | | |
Collapse
|
4
|
Ajayi PT, Katti P, Zhang Y, Willingham TB, Sun Y, Bleck CKE, Glancy B. Regulation of the evolutionarily conserved muscle myofibrillar matrix by cell type dependent and independent mechanisms. Nat Commun 2022; 13:2661. [PMID: 35562354 PMCID: PMC9106682 DOI: 10.1038/s41467-022-30401-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/29/2022] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscles play a central role in human movement through forces transmitted by contraction of the sarcomere. We recently showed that mammalian sarcomeres are connected through frequent branches forming a singular, mesh-like myofibrillar matrix. However, the extent to which myofibrillar connectivity is evolutionarily conserved as well as mechanisms which regulate the specific architecture of sarcomere branching remain unclear. Here, we demonstrate the presence of a myofibrillar matrix in the tubular, but not indirect flight (IF) muscles within Drosophila melanogaster. Moreover, we find that loss of transcription factor H15 increases sarcomere branching frequency in the tubular jump muscles, and we show that sarcomere branching can be turned on in IF muscles by salm-mediated conversion to tubular muscles. Finally, we demonstrate that neurochondrin misexpression results in myofibrillar connectivity in IF muscles without conversion to tubular muscles. These data indicate an evolutionarily conserved myofibrillar matrix regulated by both cell-type dependent and independent mechanisms.
Collapse
Affiliation(s)
- Peter T Ajayi
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Prasanna Katti
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | - Yingfan Zhang
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Ye Sun
- Electron Microscopy Core, NHLBI, NIH, Bethesda, MD, 20892, USA
| | | | - Brian Glancy
- Muscle Energetics Laboratory, NHLBI, NIH, Bethesda, MD, 20892, USA.
- NIAMS, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
The GPCR adaptor protein norbin suppresses the neutrophil-mediated immunity of mice to pneumococcal infection. Blood Adv 2021; 5:3076-3091. [PMID: 34402884 DOI: 10.1182/bloodadvances.2020002782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Streptococcal pneumonia is a worldwide health problem that kills ∼2 million people each year, particularly young children, the elderly, and immunosuppressed individuals. Alveolar macrophages and neutrophils provide the early innate immune response to clear pneumococcus from infected lungs. However, the level of neutrophil involvement is context dependent, both in humans and in mouse models of the disease, influenced by factors such as bacterial load, age, and coinfections. Here, we show that the G protein-coupled receptor (GPCR) adaptor protein norbin (neurochondrin, NCDN), which was hitherto known as a regulator of neuronal function, is a suppressor of neutrophil-mediated innate immunity. Myeloid norbin deficiency improved the immunity of mice to pneumococcal infection by increasing the involvement of neutrophils in clearing the bacteria, without affecting neutrophil recruitment or causing autoinflammation. It also improved immunity during Escherichia coli-induced septic peritonitis. It increased the responsiveness of neutrophils to a range of stimuli, promoting their ability to kill bacteria in a reactive oxygen species-dependent manner, enhancing degranulation, phagocytosis, and the production of reactive oxygen species and neutrophil extracellular traps, raising the cell surface levels of selected GPCRs, and increasing GPCR-dependent Rac and Erk signaling. The Rac guanine-nucleotide exchange factor Prex1, a known effector of norbin, was dispensable for most of these effects, which suggested that norbin controls additional downstream targets. We identified the Rac guanine-nucleotide exchange factor Vav as one of these effectors. In summary, our study presents the GPCR adaptor protein norbin as an immune suppressor that limits the ability of neutrophils to clear bacterial infections.
Collapse
|
6
|
Coelacanth-specific adaptive genes give insights into primitive evolution for water-to-land transition of tetrapods. Mar Genomics 2018; 38:89-95. [DOI: 10.1016/j.margen.2017.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 07/30/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022]
|
7
|
Struebing FL, Lee RK, Williams RW, Geisert EE. Genetic Networks in Mouse Retinal Ganglion Cells. Front Genet 2016; 7:169. [PMID: 27733864 PMCID: PMC5039302 DOI: 10.3389/fgene.2016.00169] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/06/2016] [Indexed: 01/17/2023] Open
Abstract
Retinal ganglion cells (RGCs) are the output neuron of the eye, transmitting visual information from the retina through the optic nerve to the brain. The importance of RGCs for vision is demonstrated in blinding diseases where RGCs are lost, such as in glaucoma or after optic nerve injury. In the present study, we hypothesize that normal RGC function is transcriptionally regulated. To test our hypothesis, we examine large retinal expression microarray datasets from recombinant inbred mouse strains in GeneNetwork and define transcriptional networks of RGCs and their subtypes. Two major and functionally distinct transcriptional networks centering around Thy1 and Tubb3 (Class III beta-tubulin) were identified. Each network is independently regulated and modulated by unique genomic loci. Meta-analysis of publically available data confirms that RGC subtypes are differentially susceptible to death, with alpha-RGCs and intrinsically photosensitive RGCs (ipRGCs) being less sensitive to cell death than other RGC subtypes in a mouse model of glaucoma.
Collapse
Affiliation(s)
- Felix L Struebing
- Department of Ophthalmology, Emory University School of Medicine Atlanta, GA, USA
| | - Richard K Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine Miami, FL, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center Memphis, TN, USA
| | - Eldon E Geisert
- Department of Ophthalmology, Emory University School of Medicine Atlanta, GA, USA
| |
Collapse
|
8
|
Wei G, Deng X, Agarwal S, Iwase S, Disteche C, Xu J. Patient Mutations of the Intellectual Disability Gene KDM5C Downregulate Netrin G2 and Suppress Neurite Growth in Neuro2a Cells. J Mol Neurosci 2016; 60:33-45. [PMID: 27421841 DOI: 10.1007/s12031-016-0770-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
The X-linked lysine (K)-specific demethylase 5C (KDM5C) gene plays an important role in brain development and behavior. It encodes a histone demethylase that is involved in gene regulation in neuronal differentiation and morphogenesis. When mutated, it causes neuropsychiatric symptoms, such as intellectual disability, delayed language development, epilepsy, and impulsivity. To better understand how the patient mutations affect neuronal development, we expressed KDM5C mutants in Neuro2a cells, a mouse neuroblastoma cell line. Retinoic acid (RA)-induced neurite growth was suppressed by the mutation KDM5C (Y751C) , KDM5C (H514A) , and KDM5C (F642L) , but not KDM5C (D87G) or KDM5C (A388P) . RNA-seq analysis indicated an upregulation of genes important for neuronal development, such as Ntng2, Enah, Gas1, Slit2, and Dscam, in response to the RA treatment in control Neuro2a cells transfected with GFP or wild-type KDM5C. In contrast, in cells transfected with KDM5C (Y751C) , these genes were not upregulated by RA. Ntng2 was downregulated in cells with KDM5C mutations, concordant with the lower levels of H3K4 methylation at its promoter. Moreover, knocking down Ntng2 in control Neuro2a cells led to the phenotype of short neurites similar to that of cells with KDM5C (Y751C) , whereas Ntng2 overexpression in the mutant cells rescued the morphological phenotype. These findings provide new insight into the pathogenesis of phenotypes associated with KDM5C mutations.
Collapse
Affiliation(s)
- Gengze Wei
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Xinxian Deng
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Saurabh Agarwal
- Department of Human Genetics, University of Michigan, 5815 Medical Science II, Ann Arbor, MI, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, 5815 Medical Science II, Ann Arbor, MI, USA
| | | | - Jun Xu
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
9
|
Pan D, Barber MA, Hornigold K, Baker MJ, Toth JM, Oxley D, Welch HCE. Norbin Stimulates the Catalytic Activity and Plasma Membrane Localization of the Guanine-Nucleotide Exchange Factor P-Rex1. J Biol Chem 2016; 291:6359-75. [PMID: 26792863 PMCID: PMC4813545 DOI: 10.1074/jbc.m115.686592] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/15/2022] Open
Abstract
P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates the small G protein (GTPase) Rac1 to control Rac1-dependent cytoskeletal dynamics, and thus cell morphology. Three mechanisms of P-Rex1 regulation are currently known: (i) binding of the phosphoinositide second messenger PIP3, (ii) binding of the Gβγ subunits of heterotrimeric G proteins, and (iii) phosphorylation of various serine residues. Using recombinant P-Rex1 protein to search for new binding partners, we isolated the G-protein-coupled receptor (GPCR)-adaptor protein Norbin (Neurochondrin, NCDN) from mouse brain fractions. Coimmunoprecipitation confirmed the interaction between overexpressed P-Rex1 and Norbin in COS-7 cells, as well as between endogenous P-Rex1 and Norbin in HEK-293 cells. Binding assays with purified recombinant proteins showed that their interaction is direct, and mutational analysis revealed that the pleckstrin homology domain of P-Rex1 is required. Rac-GEF activity assays with purified recombinant proteins showed that direct interaction with Norbin increases the basal, PIP3- and Gβγ-stimulated Rac-GEF activity of P-Rex1. Pak-CRIB pulldown assays demonstrated that Norbin promotes the P-Rex1-mediated activation of endogenous Rac1 upon stimulation of HEK-293 cells with lysophosphatidic acid. Finally, immunofluorescence microscopy and subcellular fractionation showed that coexpression of P-Rex1 and Norbin induces a robust translocation of both proteins from the cytosol to the plasma membrane, as well as promoting cell spreading, lamellipodia formation, and membrane ruffling, cell morphologies generated by active Rac1. In summary, we have identified a novel mechanism of P-Rex1 regulation through the GPCR-adaptor protein Norbin, a direct P-Rex1 interacting protein that promotes the Rac-GEF activity and membrane localization of P-Rex1.
Collapse
Affiliation(s)
| | | | | | | | | | - David Oxley
- the Mass Spectrometry Facility, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | | |
Collapse
|
10
|
Neurochondrin is an atypical RIIα-specific A-kinase anchoring protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1667-75. [PMID: 25916936 DOI: 10.1016/j.bbapap.2015.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 12/25/2022]
Abstract
Protein kinase activity is regulated not only by direct strategies affecting activity but also by spatial and temporal regulatory mechanisms. Kinase signaling pathways are coordinated by scaffolding proteins that orchestrate the assembly of multi-protein complexes. One family of such scaffolding proteins are the A-kinase anchoring proteins (AKAPs). AKAPs share the commonality of binding cAMP-dependent protein kinase (PKA). In addition, they bind further signaling proteins and kinase substrates and tether such multi-protein complexes to subcellular locations. The A-kinase binding (AKB) domain of AKAPs typically contains a conserved helical motif that interacts directly with the dimerization/docking (D/D) domain of the regulatory subunits of PKA. Based on a pull-down proteomics approach, we identified neurochondrin (neurite-outgrowth promoting protein) as a previously unidentified AKAP. Here, we show that neurochondrin interacts directly with PKA through a novel mechanism that involves two distinct binding regions. In addition, we demonstrate that neurochondrin has strong isoform selectivity towards the RIIα subunit of PKA with nanomolar affinity. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
|
11
|
Bogdan S, Schultz J, Grosshans J. Formin' cellular structures: Physiological roles of Diaphanous (Dia) in actin dynamics. Commun Integr Biol 2014; 6:e27634. [PMID: 24719676 PMCID: PMC3977921 DOI: 10.4161/cib.27634] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023] Open
Abstract
Members of the Diaphanous (Dia) protein family are key regulators of fundamental actin driven cellular processes, which are conserved from yeast to humans. Researchers have uncovered diverse physiological roles in cell morphology, cell motility, cell polarity, and cell division, which are involved in shaping cells into tissues and organs. The identification of numerous binding partners led to substantial progress in our understanding of the differential functions of Dia proteins. Genetic approaches and new microscopy techniques allow important new insights into their localization, activity, and molecular principles of regulation.
Collapse
Affiliation(s)
- Sven Bogdan
- Institut für Neurobiologie; Universität Münster; Münster, Germany
| | - Jörg Schultz
- Bioinformatik, Biozentrum; Universität Würzburg; Würzburg, Germany
| | - Jörg Grosshans
- Institut für Biochemie; Universitätsmedizin; Universität Göttingen; Göttingen, Germany
| |
Collapse
|
12
|
Oku S, Takahashi N, Fukata Y, Fukata M. In silico screening for palmitoyl substrates reveals a role for DHHC1/3/10 (zDHHC1/3/11)-mediated neurochondrin palmitoylation in its targeting to Rab5-positive endosomes. J Biol Chem 2013; 288:19816-29. [PMID: 23687301 DOI: 10.1074/jbc.m112.431676] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Protein palmitoylation, a common post-translational lipid modification, plays an important role in protein trafficking and functions. Recently developed palmitoyl-proteomic methods identified many novel substrates. However, the whole picture of palmitoyl substrates has not been clarified. Here, we performed global in silico screening using the CSS-Palm 2.0 program, free software for prediction of palmitoylation sites, and selected 17 candidates as novel palmitoyl substrates. Of the 17 candidates, 10 proteins, including 6 synaptic proteins (Syd-1, transmembrane AMPA receptor regulatory protein (TARP) γ-2, TARP γ-8, cornichon-2, Ca(2+)/calmodulin-dependent protein kinase IIα, and neurochondrin (Ncdn)/norbin), one focal adhesion protein (zyxin), two ion channels (TRPM8 and TRPC1), and one G-protein-coupled receptor (orexin 2 receptor), were palmitoylated. Using the DHHC palmitoylating enzyme library, we found that all tested substrates were palmitoylated by the Golgi-localized DHHC3/7 subfamily. Ncdn, a regulator for neurite outgrowth and synaptic plasticity, was robustly palmitoylated by the DHHC1/10 (zDHHC1/11; z1/11) subfamily, whose substrate has not yet been reported. As predicted by CSS-Palm 2.0, Cys-3 and Cys-4 are the palmitoylation sites for Ncdn. Ncdn was specifically localized in somato-dendritic regions, not in the axon of rat cultured neurons. Stimulated emission depletion microscopy revealed that Ncdn was localized to Rab5-positive early endosomes in a palmitoylation-dependent manner, where DHHC1/10 (z1/11) were also distributed. Knockdown of DHHC1, -3, or -10 (z11) resulted in the loss of Ncdn from Rab5-positive endosomes. Thus, through in silico screening, we demonstrate that Ncdn and the DHHC1/10 (z1/11) and DHHC3/7 subfamilies are novel palmitoyl substrate-enzyme pairs and that Ncdn palmitoylation plays an essential role in its specific endosomal targeting.
Collapse
Affiliation(s)
- Shinichiro Oku
- Division of Membrane Physiology, Department of Cell Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | | | | | | |
Collapse
|
13
|
Wang H, Duan X, Ren Y, Liu Y, Huang M, Liu P, Wang R, Gao G, Zhou L, Feng Z, Zheng W. FoxO3a Negatively Regulates Nerve Growth Factor-Induced Neuronal Differentiation Through Inhibiting the Expression of Neurochondrin in PC12 Cells. Mol Neurobiol 2012; 47:24-36. [DOI: 10.1007/s12035-012-8357-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 09/27/2012] [Indexed: 01/05/2023]
|
14
|
Wang H, Nong Y, Bazan F, Greengard P, Flajolet M. Norbin: A promising central nervous system regulator. Commun Integr Biol 2010; 3:487-90. [PMID: 21331221 DOI: 10.4161/cib.3.6.12844] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 06/29/2010] [Indexed: 11/19/2022] Open
Abstract
Norbin, a neurite-outgrowth promoting protein, has been found to interact with and regulate several membrane proteins, including metabotropic glutamate receptor 5 (mGluR5). The disruption of both Norbin alleles leads to early embryonic death between 3.5 and 6.5 day post coitus.1 Forebrain specific Norbin knockout (KO) mice are defective in synaptic plasticity,2 an interesting feature considering that Norbin was initially discovered in the context of chemical-induced long term potentiation (LTP),3 a form of synaptic plasticity extensively studied in the context of learning and memory.4 The behavioral phenotypes associated with Norbin conditional KO suggest reduced mGluR5 function. Because of its fundamental functions, Norbin is emerging as a key neuronal regulator. The aim of the present review is to summarize current knowledge about Norbin while emphasizing its role in the nervous system.
Collapse
Affiliation(s)
- Hong Wang
- Laboratory of Molecular and Cellular Neuroscience; The Rockefeller University; New York, NY USA
| | | | | | | | | |
Collapse
|