1
|
Boulanger M, Chakraborty M, Tempé D, Piechaczyk M, Bossis G. SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies. Molecules 2021; 26:molecules26040828. [PMID: 33562565 PMCID: PMC7915335 DOI: 10.3390/molecules26040828] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
One major role of the eukaryotic peptidic post-translational modifier SUMO in the cell is transcriptional control. This occurs via modification of virtually all classes of transcriptional actors, which include transcription factors, transcriptional coregulators, diverse chromatin components, as well as Pol I-, Pol II- and Pol III transcriptional machineries and their regulators. For many years, the role of SUMOylation has essentially been studied on individual proteins, or small groups of proteins, principally dealing with Pol II-mediated transcription. This provided only a fragmentary view of how SUMOylation controls transcription. The recent advent of large-scale proteomic, modifomic and genomic studies has however considerably refined our perception of the part played by SUMO in gene expression control. We review here these developments and the new concepts they are at the origin of, together with the limitations of our knowledge. How they illuminate the SUMO-dependent transcriptional mechanisms that have been characterized thus far and how they impact our view of SUMO-dependent chromatin organization are also considered.
Collapse
Affiliation(s)
- Mathias Boulanger
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Mehuli Chakraborty
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Denis Tempé
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Correspondence: (M.P.); (G.B.)
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Correspondence: (M.P.); (G.B.)
| |
Collapse
|
2
|
More than a Corepressor: The Role of CoREST Proteins in Neurodevelopment. eNeuro 2020; 7:ENEURO.0337-19.2020. [PMID: 32075869 PMCID: PMC7070449 DOI: 10.1523/eneuro.0337-19.2020] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
The molecular mechanisms governing normal neurodevelopment are tightly regulated by the action of transcription factors. Repressor element 1 (RE1) silencing transcription factor (REST) is widely documented as a regulator of neurogenesis that acts by recruiting corepressor proteins and repressing neuronal gene expression in non-neuronal cells. The REST corepressor 1 (CoREST1), CoREST2, and CoREST3 are best described for their role as part of the REST complex. However, recent evidence has shown the proteins have the ability to repress expression of distinct target genes in a REST-independent manner. These findings indicate that each CoREST paralogue may have distinct and critical roles in regulating neurodevelopment and are more than simply “REST corepressors,” whereby they act as independent repressors orchestrating biological processes during neurodevelopment.
Collapse
|
3
|
PIASγ controls stability and facilitates SUMO-2 conjugation to CoREST family of transcriptional co-repressors. Biochem J 2018; 475:1441-1454. [PMID: 29555846 DOI: 10.1042/bcj20170983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 02/05/2023]
Abstract
CoREST family of transcriptional co-repressors regulates gene expression and cell fate determination during development. CoREST co-repressors recruit with different affinity the histone demethylase LSD1 (KDM1A) and the deacetylases HDAC1/2 to repress with variable strength the expression of target genes. CoREST protein levels are differentially regulated during cell fate determination and in mature tissues. However, regulatory mechanisms of CoREST co-repressors at the protein level have not been studied. Here, we report that CoREST (CoREST1, RCOR1) and its homologs CoREST2 (RCOR2) and CoREST3 (RCOR3) interact with PIASγ (protein inhibitor of activated STAT), a SUMO (small ubiquitin-like modifier)-E3-ligase. PIASγ increases the stability of CoREST proteins and facilitates their SUMOylation by SUMO-2. Interestingly, the SUMO-conjugating enzyme, Ubc9 also facilitates the SUMOylation of CoREST proteins. However, it does not change their protein levels. Specificity was shown using the null enzymatic form of PIASγ (PIASγ-C342A) and the SUMO protease SENP-1, which reversed SUMOylation and the increment of CoREST protein levels induced by PIASγ. The major SUMO acceptor lysines are different and are localized in nonconserved sequences among CoREST proteins. SUMOylation-deficient CoREST1 and CoREST3 mutants maintain a similar interaction profile with LSD1 and HDAC1/2, and consequently maintain similar repressor capacity compared with wild-type counterparts. In conclusion, CoREST co-repressors form protein complexes with PIASγ, which acts both as SUMO E3-ligase and as a protein stabilizer for CoREST proteins. This novel regulation of CoREST by PIASγ interaction and SUMOylation may serve to control cell fate determination during development.
Collapse
|
4
|
Lopez CI, Saud KE, Aguilar R, Berndt FA, Cánovas J, Montecino M, Kukuljan M. The chromatin modifying complex CoREST/LSD1 negatively regulates notch pathway during cerebral cortex development. Dev Neurobiol 2016; 76:1360-1373. [PMID: 27112428 DOI: 10.1002/dneu.22397] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/19/2016] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
Abstract
The development of the cerebral cortex is a dynamic and coordinated process in which cell division, cell death, migration, and differentiation must be highly regulated to acquire the final architecture and functional competence of the mature organ. Notch pathway is an important regulator of differentiation and it is essential to maintain neural stem cell (NSC) pool. Here, we studied the role of epigenetic modulators such as lysine-specific demethylase 1 (LSD1) and its interactor CoREST in the regulation of the Notch pathway activity during the development of the cerebral cortex. We found that CoREST and LSD1 interact in vitro with RBPJ-κ in the repressor complex and these proteins are released upon overexpression of Notch intracellular domain (NICD). We corroborated LSD1 and RBPJ-κ interaction in developing cerebral cortex and also found that LSD1 binds to the hes1 promoter. Knock-down of CoREST and LSD1 by in utero electroporation increases Hes1 expression in vivo and decreases Ngn2. Interestingly, we found a functional interaction between CoREST and LSD1 with Notch pathway. This conclusion is based on the observation that both the defects in neuronal migration and the increase in the number of cells expressing Sox2 and Tbr2 were associated to the knock-down of either CoREST or LSD1 and were reversed by the loss of Notch. These results demonstrate that CoREST and LSD1 downregulate the Notch pathway in the developing cerebral cortex, thus suggesting a role of epigenetic regulation in the fine tuning of cell differentiation. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1360-1373, 2016.
Collapse
Affiliation(s)
- Cecilia I Lopez
- Faculty of Medicine, Program in Physiology and Biophysics, Institute for Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute (BNI), Universidad de Chile, Santiago, Chile
| | - Katherine E Saud
- Faculty of Medicine, Program in Physiology and Biophysics, Institute for Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute (BNI), Universidad de Chile, Santiago, Chile
| | - Rodrigo Aguilar
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andre's Bello, Santiago, Chile
| | - F Andrés Berndt
- Faculty of Medicine, Program in Physiology and Biophysics, Institute for Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute (BNI), Universidad de Chile, Santiago, Chile
| | - José Cánovas
- Faculty of Medicine, Program in Physiology and Biophysics, Institute for Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute (BNI), Universidad de Chile, Santiago, Chile
| | - Martín Montecino
- Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andre's Bello, Santiago, Chile
| | - Manuel Kukuljan
- Faculty of Medicine, Program in Physiology and Biophysics, Institute for Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Faculty of Medicine, Biomedical Neuroscience Institute (BNI), Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Saritas-Yildirim B, Silva EM. The role of targeted protein degradation in early neural development. Genesis 2014; 52:287-99. [PMID: 24623518 DOI: 10.1002/dvg.22771] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 11/08/2022]
Abstract
As neural stem cells differentiate into neurons during neurogenesis, the proteome of the cells is restructured by de novo expression and selective removal of regulatory proteins. The control of neurogenesis at the level of gene regulation is well documented and the regulation of protein abundance through protein degradation via the Ubiquitin/26S proteasome pathway is a rapidly developing field. This review describes our current understanding of the role of the proteasome pathway in neurogenesis. Collectively, the studies show that targeted protein degradation is an important regulatory mechanism in the generation of new neurons.
Collapse
|
6
|
Fuentes P, Cánovas J, Berndt FA, Noctor SC, Kukuljan M. CoREST/LSD1 control the development of pyramidal cortical neurons. ACTA ACUST UNITED AC 2011; 22:1431-41. [PMID: 21878487 DOI: 10.1093/cercor/bhr218] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of a neuron from a precursor cell comprises a complex set of steps ranging from regulation of the proliferative cycle through the acquisition of distinct morphology and functionality. How these processes are orchestrated is largely unknown. Using in utero manipulation of gene expression in the mouse embryonic cerebral cortex, we found that the transition between multipolar and bipolar stages of newborn cortical pyramidal neurons is markedly delayed by depletion of CoREST, a corepressor component of chromatin remodeling complexes. This profoundly affects the onset of their radial migration. The loss of CoREST function also perturbs the dynamics of neuronal precursor cell populations, transiently increasing the fraction of cells remaining in progenitor states, but not the acquisition of the neuronal glutamatergic fate of pyramidal cells. The function of CoREST in these processes appears to be independent of its best-known interactor, the RE-1 silencer of transcription/neural restrictive silencing factor, and requires the histone demethylase LSD1. This reveals the importance of epigenetic control in the execution of neural development programs, specifically in the cerebral cortex.
Collapse
Affiliation(s)
- Patricio Fuentes
- Program in Physiology and Biophysics, Institute for Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Independencia 1027, Santiago, Chile
| | | | | | | | | |
Collapse
|
7
|
van der Meer LT, Jansen JH, van der Reijden BA. Gfi1 and Gfi1b: key regulators of hematopoiesis. Leukemia 2010; 24:1834-43. [DOI: 10.1038/leu.2010.195] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Corepressor for element-1-silencing transcription factor preferentially mediates gene networks underlying neural stem cell fate decisions. Proc Natl Acad Sci U S A 2010; 107:16685-90. [PMID: 20823235 DOI: 10.1073/pnas.0906917107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) silences neuronal genes in neural stem cells (NSCs) and nonneuronal cells through its role as a dynamic modular platform for recruitment of transcriptional and epigenetic regulatory cofactors to RE1-containing promoters. In embryonic stem cells, the REST regulatory network is highly integrated with the transcriptional circuitry governing self-renewal and pluripotency, although its exact functional role is unclear. The C-terminal cofactor for REST, CoREST, also acts as a modular scaffold, but its cell type-specific roles have not been elucidated. We used chromatin immunoprecipitation-on-chip to examine CoREST and REST binding sites in NSCs and their proximate progenitor species. In NSCs, we identified a larger number of CoREST (1,820) compared with REST (322) target genes. The majority of these CoREST targets do not contain known RE1 motifs. Notably, these CoREST target genes do play important roles in pluripotency networks, in modulating NSC identity and fate decisions and in epigenetic processes previously associated with both REST and CoREST. Moreover, we found that NSC-mediated developmental transitions were associated primarily with liberation of CoREST from promoters with transcriptional repression favored in less lineage-restricted radial glia and transcriptional activation favored in more lineage-restricted neuronal-oligodendrocyte precursors. Clonal NSC REST and CoREST gene manipulation paradigms further revealed that CoREST has largely independent and previously uncharacterized roles in promoting NSC multilineage potential and modulating early neural fate decisions.
Collapse
|
9
|
Murata T, Hotta N, Toyama S, Nakayama S, Chiba S, Isomura H, Ohshima T, Kanda T, Tsurumi T. Transcriptional repression by sumoylation of Epstein-Barr virus BZLF1 protein correlates with association of histone deacetylase. J Biol Chem 2010; 285:23925-35. [PMID: 20516063 DOI: 10.1074/jbc.m109.095356] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transition from latent to lytic phases of the Epstein-Barr virus life cycle is triggered by expression of a viral transactivator, BZLF1, that then induces expression of the viral immediate-early and early genes. The BZLF1 protein is post-translationally modified by a small ubiquitin-related modifier-1 (SUMO-1). Here we found that BZLF1 is conjugated at lysine 12 not only by SUMO-1 but also by SUMO-2 and 3. The K12R mutant of BZLF1, which no longer becomes sumoylated, exhibits stronger transactivation than the wild-type BZLF1 in a reporter assay system as well as in the context of virus genome with nucleosomal structures. Furthermore, exogenous supply of a SUMO-specific protease, SENP, caused de-sumoylation of BZLF1 and enhanced BZLF1-mediated transactivation. Immunoprecipitation experiments proved that histone deacetylase 3 preferentially associated with the sumoylated form of BZLF1. Levels of the sumoylated BZLF1 increased as lytic replication progressed. Based on these observations, we conclude that sumoylation of BZLF1 regulates its transcriptional activity through histone modification during Epstein-Barr virus productive replication.
Collapse
Affiliation(s)
- Takayuki Murata
- Division of Virology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Qureshi IA, Mehler MF. Regulation of non-coding RNA networks in the nervous system--what's the REST of the story? Neurosci Lett 2009; 466:73-80. [PMID: 19679163 PMCID: PMC2767456 DOI: 10.1016/j.neulet.2009.07.093] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 07/31/2009] [Accepted: 07/31/2009] [Indexed: 01/08/2023]
Abstract
Recent advances are now providing novel insights into the mechanisms that underlie how cellular complexity, diversity, and connectivity are encoded within the genome. The repressor element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) and non-coding RNAs (ncRNAs) are emerging as key regulators that seem to orchestrate almost every aspect of nervous system development, homeostasis, and plasticity. REST and its primary cofactor, CoREST, dynamically recruit highly malleable macromolecular complexes to widely distributed genomic regulatory sequences, including the repressor element-1/neuron restrictive silencer element (RE1/NRSE). Through epigenetic mechanisms, such as site-specific targeting and higher-order chromatin remodeling, REST and CoREST can mediate cell type- and developmental stage-specific gene repression, gene activation, and long-term gene silencing for protein-coding genes and for several classes of ncRNAs (e.g. microRNAs [miRNAs] and long ncRNAs). In turn, these ncRNAs have similarly been implicated in the regulation of chromatin architecture and dynamics, transcription, post-transcriptional processing, and RNA editing and trafficking. In addition, REST and CoREST expression and function are tightly regulated by context-specific transcriptional and post-transcriptional mechanisms including bidirectional feedback loops with various ncRNAs. Not surprisingly, deregulation of REST and ncRNAs are both implicated in the molecular pathophysiology underlying diverse disorders that range from brain cancer and stroke to neurodevelopmental and neurodegenerative diseases. This review summarizes emerging aspects of the complex mechanistic relationships between these intricately interlaced control systems for neural gene expression and function.
Collapse
Affiliation(s)
- Irfan A. Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Mark F. Mehler
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
11
|
SUMO association with repressor complexes, emerging routes for transcriptional control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:451-9. [DOI: 10.1016/j.bbagrm.2009.07.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/06/2009] [Accepted: 07/10/2009] [Indexed: 11/20/2022]
|
12
|
Ouyang J, Shi Y, Valin A, Xuan Y, Gill G. Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex. Mol Cell 2009; 34:145-54. [PMID: 19394292 PMCID: PMC2727917 DOI: 10.1016/j.molcel.2009.03.013] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 12/10/2008] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
Abstract
Posttranslational modification of transcription factors by the small ubiquitin-related modifier SUMO is associated with transcriptional repression, but the underlying mechanisms remain incompletely described. We have identified binding of the LSD1/CoREST1/HDAC corepressor complex to SUMO-2. Here we show that CoREST1 binds directly and noncovalently to SUMO-2, but not SUMO-1, and CoREST1 bridges binding of the histone demethylase LSD1 to SUMO-2. Depletion of SUMO-2/3 conjugates led to transcriptional derepression, reduced occupancy of CoREST1 and LSD1, and changes in histone methylation and acetylation at some, but not all, LSD1/CoREST1/HDAC target genes. We have identified a nonconsensus SUMO-interaction motif (SIM) in CoREST1 required for SUMO-2 binding, and we show that mutation of the CoREST1 SIM disrupted SUMO-2 binding and transcriptional repression of some neuronal-specific genes in nonneuronal cells. Our results reveal that direct interactions between CoREST1 and SUMO-2 mediate SUMO-dependent changes in chromatin structure and transcription that are important for cell-type-specific gene expression.
Collapse
Affiliation(s)
- Jian Ouyang
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine 136 Harrison Avenue, Boston, MA 02111
- Department of Pathology, Harvard Medical School 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Yujiang Shi
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School 221 Longwood Avenue, Boston, MA 02115
| | - Alvaro Valin
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine 136 Harrison Avenue, Boston, MA 02111
- Department of Pathology, Harvard Medical School 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Yan Xuan
- Department of Pathology, Harvard Medical School 77 Avenue Louis Pasteur, Boston, MA 02115
| | - Grace Gill
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine 136 Harrison Avenue, Boston, MA 02111
- Department of Pathology, Harvard Medical School 77 Avenue Louis Pasteur, Boston, MA 02115
| |
Collapse
|
13
|
Liu Q, Li J, Khoury J, Colgan SP, Ibla JC. Adenosine signaling mediates SUMO-1 modification of IkappaBalpha during hypoxia and reoxygenation. J Biol Chem 2009; 284:13686-13695. [PMID: 19297320 DOI: 10.1074/jbc.m809275200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Small ubiquitin-like modifier 1 (SUMO-1) modification of IkappaBalpha has been described to actively participate in NFkappaB regulation. Following proteosomal degradation of IkappaBalpha, an auto-regulatory loop consisting of transcriptional activation of IkappaBalpha gene and SUMO-1 modification of newly synthesized IkappaBalpha proceeds. The SUMOylated IkappaBalpha form is resistant to signal-induced degradation, consequently halting NFkappaB activation. We describe a mechanistic model by which adenosine (Ado) signaling results in significant accumulation of SUMO-1 modified IkappaBalpha with subsequent attenuation of NFkappaB activation. Using models of hypoxia followed by reoxygenation (H/R), we have documented an H/R cycle-dependent increase in extracellular Ado correlating with increases in the cytoplasmic pool of IkappaBalpha/SUMO-1. We demonstrate a dose-dependent increase in IkappaBalpha/SUMO in cells treated with the general Ado receptor agonist NECA and abolished by Ado receptor antagonists. Experiments in cells exposed to cycles of H/R followed by hypoxia demonstrated differential patterns of SUMOylation and phosphorylation of IkappaBalpha, greatly impacting its proteosomal degradation by the 26 S proteasome. Assays targeting knockdown and overexpression of SUMO-1 demonstrated significant regulation of NFkappaB activation and NFkappaB-mediated gene transcription (interleukin-6). These results were confirmed in vivo using wild type and cd73 null mouse lung tissue. In summary, we present an endogenous mechanism by which cells and tissues acquire anti-inflammatory properties by recruiting a nondegradable form of IkappaBalpha, a major control point for NFkappaB activation via Ado signaling.
Collapse
Affiliation(s)
- Qian Liu
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115; Department of Surgery, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jing Li
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115; Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China
| | - Joseph Khoury
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115
| | - Sean P Colgan
- Mucosal Inflammation Program, Division of Gastroenterology, University Colorado Health Sciences Center, Denver, Colorado 80220
| | - Juan C Ibla
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|