1
|
Knop F, Zounarová A, Šabata V, Middelkoop TC, Macůrková M. Caenorhabditis elegans SEL-5/AAK1 regulates cell migration and cell outgrowth independently of its kinase activity. eLife 2024; 13:e91054. [PMID: 39028260 PMCID: PMC11333045 DOI: 10.7554/elife.91054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/19/2024] [Indexed: 07/20/2024] Open
Abstract
During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2, together with the Frizzled receptor CFZ-2, positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.
Collapse
Affiliation(s)
- Filip Knop
- Department of Cell Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Apolena Zounarová
- Department of Cell Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Vojtěch Šabata
- Department of Cell Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| | | | - Marie Macůrková
- Department of Cell Biology, Faculty of Science, Charles UniversityPragueCzech Republic
| |
Collapse
|
2
|
Fölsch H. Role of the epithelial cell-specific clathrin adaptor complex AP-1B in cell polarity. CELLULAR LOGISTICS 2015; 5:e1074331. [PMID: 27057418 DOI: 10.1080/21592799.2015.1074331] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
Abstract
Epithelial cells are important for organ development and function. To this end, they polarize their plasma membrane into biochemically and physically distinct membrane domains. The apical membrane faces the luminal site of an organ and the basolateral domain is in contact with the basement membrane and neighboring cells. To establish and maintain this polarity it is important that newly synthesized and endocytic cargos are correctly sorted according to their final destinations at either membrane. Sorting takes place at one of 2 major sorting stations in the cells, the trans-Golgi network (TGN) and recycling endosomes (REs). Polarized sorting may involve epithelial cell-specific sorting adaptors like the AP-1B clathrin adaptor complex. AP-1B facilitates basolateral sorting from REs. This review will discuss various aspects of basolateral sorting in epithelial cells with a special emphasis on AP-1B.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Cell and Molecular Biology; Northwestern University; Feinberg School of Medicine ; Chicago, IL USA
| |
Collapse
|
3
|
Farkaš R, Beňová-Liszeková D, Mentelová L, Mahmood S, Ďatková Z, Beňo M, Pečeňová L, Raška O, Šmigová J, Chase BA, Raška I, Mechler BM. Vacuole dynamics in the salivary glands ofDrosophila melanogasterduring prepupal development. Dev Growth Differ 2015; 57:74-96. [DOI: 10.1111/dgd.12193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/21/2014] [Accepted: 11/28/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Robert Farkaš
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Genetics; Comenius University; Mlynská dolina, B-1 84215 Bratislava Slovakia
| | - Silvia Mahmood
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Medical Biochemistry; Jessenius Faculty of Medicine; Comenius University; Mala Hora 4 03601 Martin Slovakia
| | - Zuzana Ďatková
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Genetics; Comenius University; Mlynská dolina, B-1 84215 Bratislava Slovakia
| | - Milan Beňo
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
| | - Ludmila Pečeňová
- Laboratory of Developmental Genetics; Institute of Experimental Endocrinology; Slovak Academy of Sciences; Vlárska 3 83306 Bratislava Slovakia
- Department of Genetics; Comenius University; Mlynská dolina, B-1 84215 Bratislava Slovakia
| | - Otakar Raška
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
| | - Jana Šmigová
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
| | - Bruce A. Chase
- Department of Biology; University of Nebraska at Omaha; 6001 Dodge Street Omaha NE 68182-0040 USA
| | - Ivan Raška
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
| | - Bernard M. Mechler
- Institute of Cellular Biology and Pathology; 1st Faculty of Medicine; Charles University in Prague; Albertov 4 12800 Prague Czech Republic
- German Cancer Research Centre; Neuenheimer Feld 581 D-69120 Heidelberg Germany
- VIT-University; Vellore Tamil Nadu India
| |
Collapse
|
4
|
Peterson SJ, Krasnow MA. Subcellular trafficking of FGF controls tracheal invasion of Drosophila flight muscle. Cell 2014; 160:313-23. [PMID: 25557078 DOI: 10.1016/j.cell.2014.11.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/07/2014] [Accepted: 11/15/2014] [Indexed: 11/16/2022]
Abstract
To meet the extreme oxygen demand of insect flight muscle, tracheal (respiratory) tubes ramify not only on its surface, as in other tissues, but also within T-tubules and ultimately surrounding every mitochondrion. Although this remarkable physiological specialization has long been recognized, its cellular and molecular basis is unknown. Here, we show that Drosophila tracheoles invade flight muscle T-tubules through transient surface openings. Like other tracheal branching events, invasion requires the Branchless FGF pathway. However, localization of the FGF chemoattractant changes from all muscle membranes to T-tubules as invasion begins. Core regulators of epithelial basolateral membrane identity localize to T-tubules, and knockdown of AP-1γ, required for basolateral trafficking, redirects FGF from T-tubules to surface, increasing tracheal surface ramification and preventing invasion. We propose that tracheal invasion is controlled by an AP-1-dependent switch in FGF trafficking. Thus, subcellular targeting of a chemoattractant can direct outgrowth to specific domains, including inside the cell.
Collapse
Affiliation(s)
- Soren J Peterson
- Howard Hughes Medical Institute and Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | - Mark A Krasnow
- Howard Hughes Medical Institute and Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.
| |
Collapse
|
5
|
Szul T, Burgess J, Jeon M, Zinn K, Marques G, Brill JA, Sztul E. The Garz Sec7 domain guanine nucleotide exchange factor for Arf regulates salivary gland development in Drosophila. CELLULAR LOGISTICS 2014; 1:69-76. [PMID: 21686256 DOI: 10.4161/cl.1.2.15512] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/11/2011] [Accepted: 03/17/2011] [Indexed: 12/22/2022]
Abstract
Surface delivery of proteins involved in cell-cell and cell-matrix interactions in cultured mammalian cells requires the GBF1 guanine nucleotide exchange factor. However, the role of GBF1 in delivery of adhesion proteins during organogenesis in intact animals has not been characterized. Here, we report the function of the fly GBF1 homolog, Gartenzwerg (Garz) in the development of the salivary gland in Drosophila melanogaster. We used the GAL4/UAS system to selectively deplete Garz from salivary gland cells. We show that depletion of Garz disrupts the secretory pathway as evidenced by the collapse of Golgi-localized Lava lamp (Lva) and the TGN-localized γ subunit of the clathrin-adaptor protein complex (AP-1). Additionally, Garz depletion inhibits trafficking of cell-cell adhesion proteins cadherin (DE-cad) and Flamingo to the cell surface. Disregulation of trafficking correlates with mistargeting of the tumor suppressor protein Discs large involved in epithelial polarity determination. Garz-depleted salivary cells are smaller and lack well-defined plasma membrane domains. Garz depletion also inhibits normal elongation and positioning of epithelial cells, resulting in a disorganized salivary gland that lacks a well defined luminal duct. Our findings suggest that Garz is essential for establishment of epithelial structures and demonstrate an absolute requirement for Garz during Drosophila development.
Collapse
Affiliation(s)
- Tomasz Szul
- Department of Cell Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Delivery of intrahemocoelic peptides for insect pest management. Trends Biotechnol 2014; 32:91-8. [DOI: 10.1016/j.tibtech.2013.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/01/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022]
|
7
|
Farías GG, Cuitino L, Guo X, Ren X, Jarnik M, Mattera R, Bonifacino JS. Signal-mediated, AP-1/clathrin-dependent sorting of transmembrane receptors to the somatodendritic domain of hippocampal neurons. Neuron 2012; 75:810-23. [PMID: 22958822 PMCID: PMC3439821 DOI: 10.1016/j.neuron.2012.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2012] [Indexed: 11/22/2022]
Abstract
Plasma membranes of the somatodendritic and axonal domains of neurons are known to have different protein compositions, but the molecular mechanisms that determine this polarized protein distribution remain poorly understood. Herein we show that somatodendritic sorting of various transmembrane receptors in rat hippocampal neurons is mediated by recognition of signals within the cytosolic domains of the proteins by the μ1A subunit of the adaptor protein-1 (AP-1) complex. This complex, in conjunction with clathrin, functions in the neuronal soma to exclude somatodendritic proteins from axonal transport carriers. Perturbation of this process affects dendritic spine morphology and decreases the number of synapses. These findings highlight the primary recognition event that underlies somatodendritic sorting and contribute to the evolving view of AP-1 as a global regulator of cell polarity.
Collapse
Affiliation(s)
- Ginny G. Farías
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| | - Loreto Cuitino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoli Guo
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuefeng Ren
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| | - Michal Jarnik
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafael Mattera
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S. Bonifacino
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Abstract
Cell polarization is an evolutionarily conserved process that facilitates asymmetric distribution of organelles and proteins and that is modified dynamically during physiological processes such as cell division, migration, and morphogenesis. The plasticity with which cells change their behavior and phenotype in response to cell intrinsic and extrinsic cues is an essential feature of normal physiology. In disease states such as cancer, cells lose their ability to behave normally in response to physiological cues. A molecular understanding of mechanisms that alter the behavior of cancer cells is limited. Cell polarity proteins are a recognized class of molecules that can receive and interpret both intrinsic and extrinsic signals to modulate cell behavior. In this review, we discuss how cell polarity proteins regulate a diverse array of biological processes and how they can contribute to alterations in the behavior of cancer cells.
Collapse
Affiliation(s)
- Senthil K Muthuswamy
- Ontario Cancer Institute, Campbell Family Institute for Breast Cancer Research, University of Toronto, Toronto M5G 2M9, Canada.
| | | |
Collapse
|
9
|
Nak regulates localization of clathrin sites in higher-order dendrites to promote local dendrite growth. Neuron 2011; 72:285-99. [PMID: 22017988 DOI: 10.1016/j.neuron.2011.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2011] [Indexed: 11/22/2022]
Abstract
VIDEO ABSTRACT During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites.
Collapse
|
10
|
Burgess J, Jauregui M, Tan J, Rollins J, Lallet S, Leventis PA, Boulianne GL, Chang HC, Le Borgne R, Krämer H, Brill JA. AP-1 and clathrin are essential for secretory granule biogenesis in Drosophila. Mol Biol Cell 2011; 22:2094-105. [PMID: 21490149 PMCID: PMC3113773 DOI: 10.1091/mbc.e11-01-0054] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Regulated secretion of hormones, digestive enzymes, and other biologically active molecules requires the formation of secretory granules. Clathrin and the clathrin adaptor protein complex 1 (AP-1) are necessary for maturation of exocrine, endocrine, and neuroendocrine secretory granules. However, the initial steps of secretory granule biogenesis are only minimally understood. Powerful genetic approaches available in the fruit fly Drosophila melanogaster were used to investigate the molecular pathway for biogenesis of the mucin-containing "glue granules" that form within epithelial cells of the third-instar larval salivary gland. Clathrin and AP-1 colocalize at the trans-Golgi network (TGN) and clathrin recruitment requires AP-1. Furthermore, clathrin and AP-1 colocalize with secretory cargo at the TGN and on immature granules. Finally, loss of clathrin or AP-1 leads to a profound block in secretory granule formation. These findings establish a novel role for AP-1- and clathrin-dependent trafficking in the biogenesis of mucin-containing secretory granules.
Collapse
Affiliation(s)
- Jason Burgess
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|