1
|
Jung N, Vellozo-Echevarría T, Barrett K, Meyer AS. Analysis of enzyme kinetics of fungal methionine synthases in an optimized colorimetric microscale assay for measuring cobalamin-independent methionine synthase activity. Enzyme Microb Technol 2025; 184:110581. [PMID: 39824044 DOI: 10.1016/j.enzmictec.2025.110581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/20/2025]
Abstract
Aspergillus spp. and Rhizopus spp., used in solid-state plant food fermentations, encode cobalamin-independent methionine synthase activity (MetE, EC 2.1.1.14). Here, we examine the enzyme kinetics, reaction activation energies (Ea), thermal robustness, and structural folds of three MetEs from three different food-fermentation relevant fungi, Aspergillus sojae, Rhizopus delemar, and Rhizopus microsporus, and compare them to the MetE from Escherichia coli. We also downscaled and optimized a colorimetric assay to allow direct MetE activity measurements in microplates. The catalytic rates, kcat, of the three fungal MetE enzymes on the methyl donor (6S)-5-methyl-tetrahydropteroyl-L-glutamate3 ranged from 1.2 to 3.3 min-1 and KM values varied from 0.8 to 6.8 µM. The kcat was lowest for the R. delemar MetE, but this enzyme also had the lowest KM thus resulting in the highest kcat/KM of ∼1.4 min-1 µM-1 among the three fungal enzymes. The kcat was higher for the E. coli enzyme, 12 min-1, but KM was 6.4 µM, resulting in kcat/KM of ∼1.9 min-1 µM-1. The Ea values of the fungal MetEs ranged from 52 to 97 kJ mole-1 and were higher than that of the E. coli MetE (38.7 kJ mole -1). The predicted structural folds of the MetEs were very similar. Tm values of the fungal MetEs ranged from 41 to 54 °C, highest for the A. sojae enzyme (54 °C), lowest for the R. delemar (41 °C). At 30 °C, the half-lives of the three fungal enzymes varied significantly, with MetE from A. sojae having the longest (> 600 min, kD=0), and R. delemar the shortest (17 min). Knowledge of the kinetics of these enzymes is important for understanding methionine synthesis in fungi and a first step in promoting methionine synthesis in fungally fermented plant foods.
Collapse
Affiliation(s)
- Noël Jung
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Tomás Vellozo-Echevarría
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Kristian Barrett
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark
| | - Anne S Meyer
- Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark.
| |
Collapse
|
2
|
Scott J, Amich J. The role of methionine synthases in fungal metabolism and virulence. Essays Biochem 2023; 67:853-863. [PMID: 37449444 DOI: 10.1042/ebc20230007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Methionine synthases (MetH) catalyse the methylation of homocysteine (Hcy) with 5-methyl-tetrahydrofolate (5, methyl-THF) acting as methyl donor, to form methionine (Met) and tetrahydrofolate (THF). This function is performed by two unrelated classes of enzymes that differ significantly in both their structures and mechanisms of action. The genomes of plants and many fungi exclusively encode cobalamin-independent enzymes (EC.2.1.1.14), while some fungi also possess proteins from the cobalamin-dependent (EC.2.1.1.13) family utilised by humans. Methionine synthase's function connects the methionine and folate cycles, making it a crucial node in primary metabolism, with impacts on important cellular processes such as anabolism, growth and synthesis of proteins, polyamines, nucleotides and lipids. As a result, MetHs are vital for the viability or virulence of numerous prominent human and plant pathogenic fungi and have been proposed as promising broad-spectrum antifungal drug targets. This review provides a summary of the relevance of methionine synthases to fungal metabolism, their potential as antifungal drug targets and insights into the structures of both classes of MetH.
Collapse
Affiliation(s)
- Jennifer Scott
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jorge Amich
- Manchester Fungal Infection Group, Division of Evolution, Infection, and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Mycology Reference Laboratory (Laboratorio de Referencia e Investigación en Micología [LRIM]), National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
3
|
Pezzotti G, Kobara M, Asai T, Nakaya T, Miyamoto N, Adachi T, Yamamoto T, Kanamura N, Ohgitani E, Marin E, Zhu W, Nishimura I, Mazda O, Nakata T, Makimura K. Raman Imaging of Pathogenic Candida auris: Visualization of Structural Characteristics and Machine-Learning Identification. Front Microbiol 2021; 12:769597. [PMID: 34867902 PMCID: PMC8633489 DOI: 10.3389/fmicb.2021.769597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
Invasive fungal infections caused by yeasts of the genus Candida carry high morbidity and cause systemic infections with high mortality rate in both immunocompetent and immunosuppressed patients. Resistance rates against antifungal drugs vary among Candida species, the most concerning specie being Candida auris, which exhibits resistance to all major classes of available antifungal drugs. The presently available identification methods for Candida species face a severe trade-off between testing speed and accuracy. Here, we propose and validate a machine-learning approach adapted to Raman spectroscopy as a rapid, precise, and labor-efficient method of clinical microbiology for C. auris identification and drug efficacy assessments. This paper demonstrates that the combination of Raman spectroscopy and machine learning analyses can provide an insightful and flexible mycology diagnostic tool, easily applicable on-site in the clinical environment.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Osaka, Japan
| | - Miyuki Kobara
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tenma Asai
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tamaki Nakaya
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Kyoto, Japan
| | - Ichiro Nishimura
- Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, United States
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuo Nakata
- Division of Pathological Science, Department of Clinical Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Koichi Makimura
- Medical Mycology, Graduate School of Medicine, Teikyo University, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
4
|
Wang Y, Weisenhorn E, MacDiarmid CW, Andreini C, Bucci M, Taggart J, Banci L, Russell J, Coon JJ, Eide DJ. The cellular economy of the Saccharomyces cerevisiae zinc proteome. Metallomics 2018; 10:1755-1776. [PMID: 30358795 PMCID: PMC6291366 DOI: 10.1039/c8mt00269j] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zinc is an essential cofactor for many proteins. A key mechanism of zinc homeostasis during deficiency is "zinc sparing" in which specific zinc-binding proteins are repressed to reduce the cellular requirement. In this report, we evaluated zinc sparing across the zinc proteome of Saccharomyces cerevisiae. The yeast zinc proteome of 582 known or potential zinc-binding proteins was identified using a bioinformatics analysis that combined global domain searches with local motif searches. Protein abundance was determined by mass spectrometry. In zinc-replete cells, we detected over 2500 proteins among which 229 were zinc proteins. Based on copy number estimates and binding stoichiometries, a replete cell contains ∼9 million zinc-binding sites on proteins. During zinc deficiency, many zinc proteins decreased in abundance and the zinc-binding requirement decreased to ∼5 million zinc atoms per cell. Many of these effects were due at least in part to changes in mRNA levels rather than simply protein degradation. Measurements of cellular zinc content showed that the level of zinc atoms per cell dropped from over 20 million in replete cells to only 1.7 million in deficient cells. These results confirmed the ability of replete cells to store excess zinc and suggested that the majority of zinc-binding sites on proteins in deficient cells are either unmetalated or mismetalated. Our analysis of two abundant zinc proteins, Fba1 aldolase and Met6 methionine synthetase, supported that hypothesis. Thus, we have discovered widespread zinc sparing mechanisms and obtained evidence of a high accumulation of zinc proteins that lack their cofactor during deficiency.
Collapse
Affiliation(s)
- Yirong Wang
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Schrevens S, Van Zeebroeck G, Riedelberger M, Tournu H, Kuchler K, Van Dijck P. Methionine is required for cAMP-PKA-mediated morphogenesis and virulence of Candida albicans. Mol Microbiol 2018; 108:258-275. [PMID: 29453849 DOI: 10.1111/mmi.13933] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2018] [Indexed: 12/24/2022]
Abstract
Candida albicans is a major human fungal pathogen, causing superficial, as well as life-threatening invasive infections. Therefore, it has to adequately sense and respond to the host defense by expressing appropriate virulence attributes. The most important virulence factor of C. albicans is the yeast-to-hyphae morphogenetic switch, which can be induced by numerous environmental cues, including the amino acid methionine. Here, we show an essential role for methionine permease Mup1 in methionine-induced morphogenesis, biofilm formation, survival inside macrophages and virulence. Furthermore, we demonstrate that this process requires conversion of methionine into S-adenosyl methionine (SAM) and its decarboxylation by Spe2. The resulting amino-propyl group is then used for biosynthesis of polyamines, which have been shown to activate adenylate cyclase. Inhibition of the SPE2 SAM decarboxylase gene strongly impairs methionine-induced morphogenesis on specific media and significantly delays virulence in the mouse systemic infection model system. Further proof of the connection between methionine uptake and initial metabolism and the cAMP-PKA pathway was obtained by showing that both Mup1 and Spe2 are required for cAMP production in response to methionine. Our results suggest that amino acid transport and further metabolism are interesting therapeutic targets as inhibitors of this may prevent the morphogenetic switch, thereby preventing virulence.
Collapse
Affiliation(s)
- Sanne Schrevens
- VIB - KU Leuven Center for Microbiology, Leuven 3001, Belgium.,Laboratory of Molecular Cell Biology, KU Leuven, Leuven 3001, Belgium
| | - Griet Van Zeebroeck
- VIB - KU Leuven Center for Microbiology, Leuven 3001, Belgium.,Laboratory of Molecular Cell Biology, KU Leuven, Leuven 3001, Belgium
| | - Michael Riedelberger
- Medical University of Vienna, Center of Medical Biochemistry, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Hélène Tournu
- VIB - KU Leuven Center for Microbiology, Leuven 3001, Belgium.,Laboratory of Molecular Cell Biology, KU Leuven, Leuven 3001, Belgium
| | - Karl Kuchler
- Medical University of Vienna, Center of Medical Biochemistry, Max F. Perutz Laboratories, Campus Vienna Biocenter, Vienna, Austria
| | - Patrick Van Dijck
- VIB - KU Leuven Center for Microbiology, Leuven 3001, Belgium.,Laboratory of Molecular Cell Biology, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
6
|
Sahu U, Rajendra VKH, Kapnoor SS, Bhagavat R, Chandra N, Rangarajan PN. Methionine synthase is localized to the nucleus in Pichia pastoris and Candida albicans and to the cytoplasm in Saccharomyces cerevisiae. J Biol Chem 2017; 292:14730-14746. [PMID: 28701466 DOI: 10.1074/jbc.m117.783019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/10/2017] [Indexed: 11/06/2022] Open
Abstract
Methionine synthase (MS) catalyzes methylation of homocysteine, the last step in the biosynthesis of methionine, which is essential for the regeneration of tetrahydrofolate and biosynthesis of S-adenosylmethionine. Here, we report that MS is localized to the nucleus of Pichia pastoris and Candida albicans but is cytoplasmic in Saccharomyces cerevisiae The P. pastoris strain carrying a deletion of the MET6 gene encoding MS (Ppmet6) exhibits methionine as well as adenine auxotrophy indicating that MS is required for methionine as well as adenine biosynthesis. Nuclear localization of P. pastoris MS (PpMS) was abrogated by the deletion of 107 C-terminal amino acids or the R742A mutation. In silico analysis of the PpMS structure indicated that PpMS may exist in a dimer-like configuration in which Arg-742 of a monomer forms a salt bridge with Asp-113 of another monomer. Biochemical studies indicate that R742A as well as D113R mutations abrogate nuclear localization of PpMS and its ability to reverse methionine auxotrophy of Ppmet6 Thus, association of two PpMS monomers through the interaction of Arg-742 and Asp-113 is essential for catalytic activity and nuclear localization. When PpMS is targeted to the cytoplasm employing a heterologous nuclear export signal, it is expressed at very low levels and is unable to reverse methionine and adenine auxotrophy of Ppmet6 Thus, nuclear localization is essential for the stability and function of MS in P. pastoris. We conclude that nuclear localization of MS is a unique feature of respiratory yeasts such as P. pastoris and C. albicans, and it may have novel moonlighting functions in the nucleus.
Collapse
Affiliation(s)
- Umakant Sahu
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Vinod K H Rajendra
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shankar S Kapnoor
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Raghu Bhagavat
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nagasuma Chandra
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pundi N Rangarajan
- From the Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
7
|
Ubhi DK, Robertus JD. The Cobalamin-Independent Methionine Synthase Enzyme Captured in a Substrate-Induced Closed Conformation. J Mol Biol 2015; 427:901-909. [DOI: 10.1016/j.jmb.2014.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
|
8
|
Inhibitors of amino acids biosynthesis as antifungal agents. Amino Acids 2014; 47:227-49. [PMID: 25408465 PMCID: PMC4302243 DOI: 10.1007/s00726-014-1873-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022]
Abstract
Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.
Collapse
|
9
|
Ubhi D, Kago G, Monzingo AF, Robertus JD. Structural analysis of a fungal methionine synthase with substrates and inhibitors. J Mol Biol 2014; 426:1839-47. [PMID: 24524835 DOI: 10.1016/j.jmb.2014.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 11/26/2022]
Abstract
The cobalamin-independent methionine synthase from Candida albicans, known as Met6p, is a 90-kDa enzyme that consists of two (βα)8 barrels. The active site is located between the two domains and has binding sites for a zinc ion and substrates L-homocysteine and 5-methyl-tetrahydrofolate-glutamate3. Met6p catalyzes transfer of the methyl group of 5-methyl-tetrahydrofolate-glutamate3 to the L-homocysteine thiolate to generate methionine. Met6p is essential for fungal growth, and we currently pursue it as an antifungal drug design target. Here we report the binding of L-homocysteine, methionine, and several folate analogs. We show that binding of L-homocysteine or methionine results in conformational rearrangements at the amino acid binding pocket, moving the catalytic zinc into position to activate the thiol group. We also map the folate binding pocket and identify specific binding residues, like Asn126, whose mutation eliminates catalytic activity. We also report the development of a robust fluorescence-based activity assay suitable for high-throughput screening. We use this assay and an X-ray structure to characterize methotrexate as a weak inhibitor of fungal Met6p.
Collapse
Affiliation(s)
- Devinder Ubhi
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Grace Kago
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Arthur F Monzingo
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jon D Robertus
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
10
|
Abdel-Azeim S, Li X, Chung LW, Morokuma K. Zinc-Homocysteine binding in cobalamin-dependent methionine synthase and its role in the substrate activation: DFT, ONIOM, and QM/MM molecular dynamics studies. J Comput Chem 2011; 32:3154-67. [DOI: 10.1002/jcc.21895] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 06/16/2011] [Accepted: 06/28/2011] [Indexed: 12/20/2022]
|
11
|
Ubhi D, Kavanagh KL, Monzingo AF, Robertus JD. Structure of Candida albicans methionine synthase determined by employing surface residue mutagenesis. Arch Biochem Biophys 2011; 513:19-26. [PMID: 21689631 DOI: 10.1016/j.abb.2011.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
Fungal methionine synthase, Met6p, transfers a methyl group from 5-methyl-tetrahydrofolate to homocysteine to generate methionine. The enzyme is essential to fungal growth and is a potential anti-fungal drug design target. We have characterized the enzyme from the pathogen Candida albicans but were unable to crystallize it in native form. We converted Lys103, Lys104, and Glu107 all to Tyr (Met6pY), Thr (Met6pT) and Ala (Met6pA). All variants showed wild-type kinetic activity and formed useful crystals, each with unique crystal packing. In each case the mutated residues participated in beneficial crystal contacts. We have solved the three structures at 2.0-2.8Å resolution and analyzed crystal packing, active-site residues, and similarity to other known methionine synthase structures. C. albicans Met6p has a two domain structure with each of the domains having a (βα)(8)-barrel fold. The barrels are arranged face-to-face and the active site is located in a cleft between the two domains. Met6p utilizes a zinc ion for catalysis that is bound in the C-terminal domain and ligated by four conserved residues: His657, Cys659, Glu679 and Cys739.
Collapse
Affiliation(s)
- Devinder Ubhi
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, United States
| | | | | | | |
Collapse
|
12
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|