1
|
Qian JW, Wang XY, Deng K, Li DF, Guo L. Crystal structure of the chromosome partition protein MukE homodimer. Biochem Biophys Res Commun 2021; 589:229-233. [PMID: 34929446 DOI: 10.1016/j.bbrc.2021.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/15/2022]
Abstract
The SMC (structural maintenance of chromosomes) proteins are known to be involved in chromosome pairing or aggregation and play an important role in cell cycle and division. Different from SMC-ScpAB complex maintaining chromosome structure in most bacteria, the MukB-MukE-MukF complex is responsible for chromosome condensation in E. coli and some γ-proteobacter. Though different models were proposed to illustrate the mechanism of how the MukBEF complex worked, the assembly of the MukBEF complex is a key. The MukE dimer interacted with the middle region of one MukF molecule, and was clamped by the N- and C-terminal domain of the latter, and then was involved in the interaction with the head domain of MukB. To reveal the structural basis of MukE involved in the dynamic equilibrium of potential different MukBEF assemblies, we determined the MukE structure at 2.44 Å resolution. We found that the binding cavity for the α10, β4 and β5 of MukF (residues 296-327) in the MukE dimer has been occupied by the α9 and β7 strand of MukE. We proposed that the highly dynamic C-terminal region (173-225) was important for the MukE-F assembly and then involved in the MukBEF complex formation.
Collapse
Affiliation(s)
- Jia-Wei Qian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Xiao-Yan Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Kai Deng
- Reproductive Medicine Center, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Tatebe H, Lim CT, Konno H, Shiozaki K, Shinohara A, Uchihashi T, Furukohri A. Rad50 zinc hook functions as a constitutive dimerization module interchangeable with SMC hinge. Nat Commun 2020; 11:370. [PMID: 31953386 PMCID: PMC6969161 DOI: 10.1038/s41467-019-14025-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/10/2019] [Indexed: 01/11/2023] Open
Abstract
The human Mre11/Rad50 complex is one of the key factors in genome maintenance pathways. Previous nanoscale imaging by atomic force microscopy (AFM) showed that the ring-like structure of the human Mre11/Rad50 complex transiently opens at the zinc hook of Rad50. However, imaging of the human Mre11/Rad50 complex by high-speed AFM shows that the Rad50 coiled-coil arms are consistently bridged by the dimerized hooks while the Mre11/Rad50 ring opens by disconnecting the head domains; resembling other SMC proteins such as cohesin or condensin. These architectural features are conserved in the yeast and bacterial Mre11/Rad50 complexes. Yeast strains harboring the chimeric Mre11/Rad50 complex containing the SMC hinge of bacterial condensin MukB instead of the RAD50 hook properly functions in DNA repair. We propose that the basic role of the Rad50 hook is similar to that of the SMC hinge, which serves as rather stable dimerization interface.
Collapse
Affiliation(s)
- Hisashi Tatebe
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, 630-0192, Japan
| | - Chew Theng Lim
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, 630-0192, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuhiro Shiozaki
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, 630-0192, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan.
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.
| | - Asako Furukohri
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Abstract
Smc5 and Smc6, together with the kleisin Nse4, form the heart of the enigmatic and poorly understood Smc5/6 complex, which is frequently viewed as a cousin of cohesin and condensin with functions in DNA repair. As novel functions for cohesin and condensin complexes in the organization of long-range chromatin architecture have recently emerged, new unsuspected roles for Smc5/6 have also surfaced. Here, I aim to provide a comprehensive overview of our current knowledge of the Smc5/6 complex, including its long-established function in genome stability, its multiple roles in DNA repair, and its recently discovered connection to the transcription inhibition of hepatitis B virus genomes. In addition, I summarize new research that is beginning to tease out the molecular details of Smc5/6 structure and function, knowledge that will illuminate the nuclear activities of Smc5/6 in the stability and dynamics of eukaryotic genomes.
Collapse
Affiliation(s)
- Luis Aragón
- Cell Cycle Group, MRC London Institute of Medical Sciences, Hammersmith Hospital Campus, London W12 0NN, United Kingdom;
| |
Collapse
|
4
|
Nolivos S, Sherratt D. The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol Rev 2013; 38:380-92. [PMID: 24118085 PMCID: PMC4255302 DOI: 10.1111/1574-6976.12045] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/09/2013] [Accepted: 08/26/2013] [Indexed: 12/27/2022] Open
Abstract
Structural Maintenance of Chromosomes (SMC) protein complexes are found in all three domains of life. They are characterized by a distinctive and conserved architecture in which a globular ATPase ‘head’ domain is formed by the N- and C-terminal regions of the SMC protein coming together, with a c. 50-nm-long antiparallel coiled-coil separating the head from a dimerization ‘hinge’. Dimerization gives both V- and O-shaped SMC dimers. The distinctive architecture points to a conserved biochemical mechanism of action. However, the details of this mechanism are incomplete, and the precise ways in which this mechanism leads to the biological functions of these complexes in chromosome organization and processing remain unclear. In this review, we introduce the properties of bacterial SMC complexes, compare them with eukaryotic complexes and discuss how their likely biochemical action relates to their roles in chromosome organization and segregation.
Collapse
Affiliation(s)
- Sophie Nolivos
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | |
Collapse
|
5
|
Abstract
In recent years, our understanding of the functioning of ABC (ATP-binding cassette) systems has been boosted by the combination of biochemical and structural approaches. However, the origin and the distribution of ABC proteins among living organisms are difficult to understand in a phylogenetic perspective, because it is hard to discriminate orthology and paralogy, due to the existence of horizontal gene transfer. In this chapter, I present an update of the classification of ABC systems and discuss a hypothetical scenario of their evolution. The hypothetical presence of ABC ATPases in the last common ancestor of modern organisms is discussed, as well as the additional possibility that ABC systems might have been transmitted to eukaryotes, after the two endosymbiosis events that led to the constitution of eukaryotic organelles. I update the functional information of selected ABC systems and introduce new families of ABC proteins that have been included recently into this vast superfamily, thanks to the availability of high-resolution three-dimensional structures.
Collapse
|
6
|
Weitzel CS, Waldman VM, Graham TA, Oakley MG. A repeated coiled-coil interruption in the Escherichia coli condensin MukB. J Mol Biol 2011; 414:578-95. [PMID: 22041452 DOI: 10.1016/j.jmb.2011.10.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 01/18/2023]
Abstract
MukB, a divergent structural maintenance of chromosomes (SMC) protein, is important for chromosome segregation and condensation in Escherichia coli and other γ-proteobacteria. MukB and canonical SMC proteins share a common five-domain structure in which globular N- and C-terminal regions combine to form an ATP-binding-cassette-like ATPase domain. This ATPase domain is connected to a central, globular dimerization domain by a long antiparallel coiled coil. The structures of both globular domains have been solved recently. In contrast, little is known about the coiled coil, in spite of its clear importance for SMC function. Recently, we identified interacting regions on the N- and C-terminal halves of the MukB coiled coil through photoaffinity cross-linking experiments. On the basis of these low-resolution experimental constraints, phylogenetic data, and coiled-coil prediction analysis, we proposed a preliminary model in which the MukB coiled coil is divided into multiple segments. Here, we use a disulfide cross-linking assay to detect paired residues on opposite strands of MukB's coiled coil. This method provides accurate register data and demonstrates the presence of at least five coiled-coil segments in this domain. Moreover, these studies show that the segments are interrupted by a repeated, unprecedented deviation from canonical coiled-coil structure. These experiments provide a sufficiently detailed view of the MukB coiled coil to allow rational manipulation of this region for the first time, opening the door for structure-function studies of this domain.
Collapse
|
7
|
Collier C, Machón C, Briggs GS, Smits WK, Soultanas P. Untwisting of the DNA helix stimulates the endonuclease activity of Bacillus subtilis Nth at AP sites. Nucleic Acids Res 2011; 40:739-50. [PMID: 21954439 PMCID: PMC3258159 DOI: 10.1093/nar/gkr785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacterial nucleoid associated proteins play a variety of roles in genome maintenance and dynamics. Their involvement in genome packaging, DNA replication and transcription are well documented but it is still unclear whether they play any specific roles in genome repair. We discovered that untwisting of the DNA double helix by bacterial non-specific DNA binding proteins stimulates the activity of a repair endonuclease of the Nth/MutY family involved in abasic site removal during base excision repair. The essential Bacillus subtilis primosomal gene dnaD, coding for a protein with DNA-untwisting activity, is in the same operon with nth and the promoter activity of this operon is transiently stimulated by H(2)O(2). Consequently, dnaD mRNA levels persist high upon treatment with H(2)O(2) compared to the reduced mRNA levels of the other essential primosomal genes dnaB and dnaI, suggesting that DnaD may play an important role in DNA repair in addition to its essential role in replication initiation. Homologous Nth repair endonucleases are found in nearly all organisms, including humans. Our data have wider implications for DNA repair as they suggest that genome associated proteins that alter the superhelicity of the DNA indirectly facilitate base excision repair mediated by repair endonucleases of the Nth/MutY family.
Collapse
Affiliation(s)
- Christopher Collier
- Centre for Biomolecular Sciences, School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
8
|
Bates AD, Berger JM, Maxwell A. The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks. Nucleic Acids Res 2011; 39:6327-39. [PMID: 21525132 PMCID: PMC3159449 DOI: 10.1093/nar/gkr258] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/27/2022] Open
Abstract
Type II DNA topoisomerases (topos) catalyse changes in DNA topology by passing one double-stranded DNA segment through another. This reaction is essential to processes such as replication and transcription, but carries with it the inherent danger of permanent double-strand break (DSB) formation. All type II topos hydrolyse ATP during their reactions; however, only DNA gyrase is able to harness the free energy of hydrolysis to drive DNA supercoiling, an energetically unfavourable process. A long-standing puzzle has been to understand why the majority of type II enzymes consume ATP to support reactions that do not require a net energy input. While certain type II topos are known to 'simplify' distributions of DNA topoisomers below thermodynamic equilibrium levels, the energy required for this process is very low, suggesting that this behaviour is not the principal reason for ATP hydrolysis. Instead, we propose that the energy of ATP hydrolysis is needed to control the separation of protein-protein interfaces and prevent the accidental formation of potentially mutagenic or cytotoxic DSBs. This interpretation has parallels with the actions of a variety of molecular machines that catalyse the conformational rearrangement of biological macromolecules.
Collapse
Affiliation(s)
- Andrew D Bates
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK.
| | | | | |
Collapse
|
9
|
|