1
|
Wang M, Yang Y, Xu Y. Brain nuclear receptors and cardiovascular function. Cell Biosci 2023; 13:14. [PMID: 36670468 PMCID: PMC9854230 DOI: 10.1186/s13578-023-00962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Brain-heart interaction has raised up increasing attentions. Nuclear receptors (NRs) are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of cardiovascular diseases (CVDs), including hypertension, heart failure, atherosclerosis, etc. In this review, we will elaborate recent findings that have established the physiological relevance of brain NRs in the context of cardiovascular function. In addition, we will discuss the currently available evidence regarding the distinct neuronal populations that respond to brain NRs in the cardiovascular control. These findings suggest connections between cardiac control and brain dynamics through NR signaling, which may lead to novel tools for the treatment of pathological changes in the CVDs.
Collapse
Affiliation(s)
- Mengjie Wang
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yongjie Yang
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yong Xu
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
2
|
Hong H, Su J, Huang C, Lu X, Cui Z. Comprehensive insights into the function and molecular and pharmacological regulation of neuron-derived orphan receptor 1, an orphan receptor. Front Pharmacol 2022; 13:981490. [PMID: 36110555 PMCID: PMC9468329 DOI: 10.3389/fphar.2022.981490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Neuron-derived orphan receptor 1 (NOR1), also called nuclear receptor subfamily 4 group A member 3 (NR4A3), is a nuclear receptor belonging to the NR4A family. Since no endogenous ligand has been identified to date, NOR1 is also referred to as an orphan receptor. NOR1 is expressed in a variety of cells and tissues, including neurons, vascular smooth muscle cells, T lymphocytes, dendritic cells, tumor cells, heart, liver, and pancreas. Because NOR1 was first identified in apoptotic neurons, it is functionally associated with the regulation of cell migration and the growth of neuronal synapses. In-depth studies have shown that NOR1 can be edited by the immediate early gene and functions as a transcription factor. NOR1 has been shown to be rapidly induced by a number of stimulants including growth factors, fatty acids, and neurotransmitters. Elevated NOR1 levels may be involved in a number of pathophysiological processes. These include regulation of cellular apoptosis and regeneration, neuron formation, contextual fearing memory, inflammation, vascular smooth muscle proliferation, insulin secretion, and tumor development, whereby NOR1 mediates the pathogenesis of numerous diseases such as cerebral ischemia, depression, post-traumatic stress disorder, atherosclerosis, abdominal aortic aneurysm, cardiac hypertrophy, diabetes, osteoarthritis, rheumatoid arthritis, and cancer. However, to date, comprehensive insights into the function of NOR1 are not available in sources published online. In this review, we provide a brief overview of the function and molecular and pharmacological regulation of NOR1 in various pathological or physiological conditions to advance the development of NOR1 as a novel target for disease treatment.
Collapse
Affiliation(s)
- Hongxiang Hong
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jianbin Su
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Zhiming Cui,
| |
Collapse
|
3
|
Hepatic DNA Methylation in Response to Early Stimulation of Microbiota with Lactobacillus Synbiotics in Broiler Chickens. Genes (Basel) 2020; 11:genes11050579. [PMID: 32455682 PMCID: PMC7290315 DOI: 10.3390/genes11050579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/16/2022] Open
Abstract
DNA methylation inhibits DNA transcription by the addition of methyl residues to cysteine within the CpG islands of gene promoters. The process of DNA methylation can be modulated by environmental factors such as intestinal microbiota. In poultry, the composition of the intestinal microbiota can be stimulated by in ovo delivery of synbiotics. The present study aims to determine the effect of Lactobacillus synbiotics delivered in ovo on the level of hepatic DNA methylation in broiler chickens. In ovo stimulation was performed on day 12 of egg incubation. Bioactive compounds delivered in ovo included (S1)—Lactobacillus salivarius with GOS and (S2)—Lactobacillus plantarum with RFO. Samples were collected from six individuals from each group on day 42 post-hatching. DNA methylation of five genes selected on the basis of the transcriptome data were analyzed using the qMSP method. Significant changes were observed in DNA methylation of genes in liver including ANGPTL4 and NR4A3, after S2 delivery. The obtained results confirm that the downregulation of metabolic gene expression in the liver mediated by in ovo stimulation had epigenetic characteristics.
Collapse
|
4
|
Close AF, Dadheech N, Villela BS, Rouillard C, Buteau J. The orphan nuclear receptor Nor1/Nr4a3 is a negative regulator of β-cell mass. J Biol Chem 2019; 294:4889-4897. [PMID: 30696767 DOI: 10.1074/jbc.ra118.005135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
The Nr4a subfamily of nuclear receptor comprises three members in mammalian cells: Nur77/Nr4a1, Nurr1/Nr4a2, and Nor1/Nr4a3. Nr4a proteins play key roles in the regulation of glucose homeostasis in peripheral metabolic tissues. However, their biological functions in β-cells remain relatively uncharacterized. Here we sought to investigate the potential role of Nor1 in the regulation of β-cell mass and, in particular, β-cell survival/apoptosis. We used histological analysis to examine the consequences of genetic deletion of either Nur77 and Nor1 on β-cell mass, investigated the expression patterns of Nr4as in human islets and INS cells and performed gain- and loss-of-function experiments to further characterize the role of Nor1 in β-cell apoptosis. Surprisingly, Nor1 knockout mice displayed increased β-cell mass, whereas mice with genetic deletion of Nur77 did not exhibit any significant differences compared with their WT littermates. The increase in β-cell mass in Nor1 knockout mice was accompanied by improved glucose tolerance. A gene expression study performed in both human islets and INS cells revealed that Nor1 expression is significantly increased by pro-inflammatory cytokines and, to a lesser extent, by elevated concentrations of glucose. Nor1 overexpression in both INS and human islet cells caused apoptosis, whereas siRNA-mediated Nor1 knockdown prevented cytokine-induced β-cell death. Finally, Nor1 expression was up-regulated in islets of individuals with type 2 diabetes. Altogether, our results uncover that Nor1 negatively regulates β-cell mass. Nor1 represents a promising molecular target in diabetes treatment to prevent β-cell destruction.
Collapse
Affiliation(s)
- Anne-Françoise Close
- From the Department of AFNS, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,the Alberta Diabetes Institute, Edmonton, Alberta T6G 2E1, Canada
| | - Nidheesh Dadheech
- From the Department of AFNS, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,the Alberta Diabetes Institute, Edmonton, Alberta T6G 2E1, Canada
| | - Bárbara Scoralick Villela
- From the Department of AFNS, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.,the Alberta Diabetes Institute, Edmonton, Alberta T6G 2E1, Canada
| | - Claude Rouillard
- the Département de Psychiatrie et Neurosciences, Université Laval, Québec, Québec G1V 4G2, Canada, and.,the Centre de Recherche du CHU de Québec, Québec, Québec G1V 4G2, Canada
| | - Jean Buteau
- From the Department of AFNS, University of Alberta, Edmonton, Alberta T6G 2E1, Canada, .,the Alberta Diabetes Institute, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
5
|
Calisi RM, Austin SH, Lang AS, MacManes MD. Sex-biased transcriptomic response of the reproductive axis to stress. Horm Behav 2018; 100:56-68. [PMID: 29378207 DOI: 10.1016/j.yhbeh.2017.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 02/07/2023]
Abstract
Stress is a well-known cause of reproductive dysfunction in many species, including birds, rodents, and humans, though males and females may respond differently. A powerful way to investigate how stress affects reproduction is by examining its effects on a biological system essential for regulating reproduction, the hypothalamic-pituitary-gonadal (HPG) axis. Often this is done by observing how a stressor affects the amount of glucocorticoids, such as cortisol or corticosterone, circulating in the blood and their relationship with a handful of known HPG-producing reproductive hormones, like testosterone and estradiol. Until now, we have lacked a full understanding of how stress affects all genomic activity of the HPG axis and how this might differ between the sexes. We leveraged a highly replicated and sex-balanced experimental approach to test how male and female rock doves (Columba livia) respond to restraint stress at the level of their transcriptome. Females exhibit increased genomic responsiveness to stress at all levels of their HPG axis as compared to males, and these responsive genes are mostly unique to females. Reasons for this may be due to fluctuations in the female endocrine environment over the reproductive cycle and/or their evolutionary history, including parental investment and the potential for maternal effects. Direct links between genome to phenome cause and effect cannot be ascertained at this stage; however, the data we report provide a vital genomic foundation on which sex-specific reproductive dysfunction and adaptation in the face of stress can be further experimentally studied, as well as novel gene targets for genetic intervention and therapy investigations.
Collapse
Affiliation(s)
- Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States.
| | - Suzanne H Austin
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, United States
| | - Andrew S Lang
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, United States
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, United States
| |
Collapse
|
6
|
Xu Y, O'Malley BW, Elmquist JK. Brain nuclear receptors and body weight regulation. J Clin Invest 2017; 127:1172-1180. [PMID: 28218618 DOI: 10.1172/jci88891] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essential roles in the regulation of energy homeostasis. Understanding the role and the underlying mechanisms of NRs in the context of energy balance control may facilitate the identification of novel targets to treat obesity. Notably, NRs are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of energy balance, including feeding, energy expenditure and physical activity. In this Review we summarize some of the recent literature regarding effects of brain NRs on body weight regulation and discuss mechanisms underlying these effects.
Collapse
|
7
|
Nonogaki K, Kaji T, Yamazaki T, Murakami M. Pharmacologic stimulation of central GLP-1 receptors has opposite effects on the alterations of plasma FGF21 levels induced by feeding and fasting. Neurosci Lett 2015; 612:14-17. [PMID: 26683903 DOI: 10.1016/j.neulet.2015.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/25/2015] [Accepted: 12/08/2015] [Indexed: 12/29/2022]
Abstract
Fibroblast growth factor 21 (FGF21) functions as an endocrine hormone to regulate energy metabolism. Circulating FGF21 is derived from the liver and is produced in response to alterations of nutritional status. Here we show the effects of liraglutide, a human glucagon-like-peptide-1 (GLP-1) receptor agonist, injected into the third cerebral ventricle on body weight and plasma FGF21 levels in free-feeding mice, food-deprived mice, and mice provided 1g after the injection. In free-feeding mice, liraglutide (5-100μg/kg) injected into the third cerebral ventricle suppressed food intake and body weight after 24h in a dose-dependent manner. Liraglutide (50 and 100μg/kg) significantly increased plasma FGF21 levels and hepatic FGF21 expression, whereas smaller doses (5 and 10μg/kg) had no effect. In food-deprived mice, body weight did not differ significantly between the saline control and liraglutide-treated groups, but liraglutide (100μg/kg) significantly decreased plasma FGF21 levels at 24h compared with the saline control. In mice provided 1g food, body weight did not differ significantly between the saline control and liraglutide-treated groups, but liraglutide (50μg/kg) significantly decreased plasma FGF21 levels at 24h compared with the saline control. These findings suggest that intracerebral injection of liraglutide decreases body weight by inhibiting food intake and increases plasma FGF21 levels in free-feeding mice, whereas it suppresses the elevations of plasma FGF21 levels induced by fasting or the restricted feeding. Thus, pharmacologic stimulation of central GLP-1 receptors has opposite effects on the alterations of plasma FGF21 levels induced by feeding and fasting.
Collapse
Affiliation(s)
- Katsunori Nonogaki
- Department of Diabetes Technology, Tohoku University Graduate School of Biomedical Engineering, Japan.
| | - Takao Kaji
- Department of Diabetes Technology, Tohoku University Graduate School of Biomedical Engineering, Japan
| | - Tomoe Yamazaki
- Department of Diabetes Technology, Tohoku University Graduate School of Biomedical Engineering, Japan
| | - Mari Murakami
- Department of Diabetes Technology, Tohoku University Graduate School of Biomedical Engineering, Japan
| |
Collapse
|
8
|
Bodnar RJ. Endogenous opioids and feeding behavior: A decade of further progress (2004-2014). A Festschrift to Dr. Abba Kastin. Peptides 2015; 72:20-33. [PMID: 25843025 DOI: 10.1016/j.peptides.2015.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Functional elucidation of the endogenous opioid system temporally paralleled the creation and growth of the journal, Peptides, under the leadership of its founding editor, Dr. Abba Kastin. He was prescient in publishing annual and uninterrupted reviews on Endogenous Opiates and Behavior that served as a microcosm for the journal under his stewardship. This author published a 2004 review, "Endogenous opioids and feeding behavior: a thirty-year historical perspective", summarizing research in this field between 1974 and 2003. The present review "closes the circle" by reviewing the last 10 years (2004-2014) of research examining the role of endogenous opioids and feeding behavior. The review summarizes effects upon ingestive behavior following administration of opioid receptor agonists, in opioid receptor knockout animals, following administration of general opioid receptor antagonists, following administration of selective mu, delta, kappa and ORL-1 receptor antagonists, and evaluating opioid peptide and opioid receptor changes in different food intake models.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Behavioral and Cognitive Neuroscience Doctoral Program Cluster, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
9
|
Chen Y, Wu R, Chen HZ, Xiao Q, Wang WJ, He JP, Li XX, Yu XW, Li L, Wang P, Wan XC, Tian XH, Li SJ, Yu X, Wu Q. Enhancement of hypothalamic STAT3 acetylation by nuclear receptor Nur77 dictates leptin sensitivity. Diabetes 2015; 64:2069-81. [PMID: 25576055 DOI: 10.2337/db14-1206] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/01/2015] [Indexed: 11/13/2022]
Abstract
Leptin, an anorexigenic hormone in the hypothalamus, suppresses food intake and increases energy expenditure. Failure to respond to leptin will lead to obesity. Here, we discovered that nuclear receptor Nur77 expression is lower in the hypothalamus of obese mice compared with normal mice. Injection of leptin results in significant reduction in body weight in wild-type mice but not in Nur77 knockout (KO) littermates or mice with specific Nur77 knockdown in the hypothalamus. Hypothalamic Nur77 not only participates in leptin central control of food intake but also expands leptin's reach to liver and adipose tissues to regulate lipid metabolism. Nur77 facilitates signal transducer and activator of transcription 3 (STAT3) acetylation by recruiting acetylase p300 and disassociating deacetylase histone deacetylase 1 (HDAC1) to enhance the transcriptional activity of STAT3 and consequently modulates the expression of downstream gene Pomc in the hypothalamus. Nur77 deficiency compromises response to leptin in mice fed a high-fat diet. Severe leptin resistance in Nur77 KO mice with increased appetite, lower energy expenditure, and hyperleptinemia contributes to aging-induced obesity. Our study opens a new avenue for regulating metabolism with Nur77 as the positive modulator in the leptin-driven antiobesity in the hypothalamus.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Rong Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Hang-Zi Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Qian Xiao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Wei-Jia Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Jian-Ping He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Xiao-Xue Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Xian-Wen Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| | - Peng Wang
- Department of Neurosurgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Xi-Chen Wan
- Department of Neurosurgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Xin-Hua Tian
- Department of Neurosurgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, China
| | - Shu-Jing Li
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, Shanghai Province, China
| | - Xiang Yu
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, Shanghai Province, China
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, China
| |
Collapse
|
10
|
Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. Proc Natl Acad Sci U S A 2014; 111:17929-34. [PMID: 25453090 DOI: 10.1073/pnas.1420369111] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Certain complex phenotypes appear repeatedly across diverse species due to processes of evolutionary conservation and convergence. In some contexts like developmental body patterning, there is increased appreciation that common molecular mechanisms underlie common phenotypes; these molecular mechanisms include highly conserved genes and networks that may be modified by lineage-specific mutations. However, the existence of deeply conserved mechanisms for social behaviors has not yet been demonstrated. We used a comparative genomics approach to determine whether shared neuromolecular mechanisms could underlie behavioral response to territory intrusion across species spanning a broad phylogenetic range: house mouse (Mus musculus), stickleback fish (Gasterosteus aculeatus), and honey bee (Apis mellifera). Territory intrusion modulated similar brain functional processes in each species, including those associated with hormone-mediated signal transduction and neurodevelopment. Changes in chromosome organization and energy metabolism appear to be core, conserved processes involved in the response to territory intrusion. We also found that several homologous transcription factors that are typically associated with neural development were modulated across all three species, suggesting that shared neuronal effects may involve transcriptional cascades of evolutionarily conserved genes. Furthermore, immunohistochemical analyses of a subset of these transcription factors in mouse again implicated modulation of energy metabolism in the behavioral response. These results provide support for conserved genetic "toolkits" that are used in independent evolutions of the response to social challenge in diverse taxa.
Collapse
|
11
|
Pérez-Sieira S, López M, Nogueiras R, Tovar S. Regulation of NR4A by nutritional status, gender, postnatal development and hormonal deficiency. Sci Rep 2014; 4:4264. [PMID: 24584059 PMCID: PMC3939456 DOI: 10.1038/srep04264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/14/2014] [Indexed: 01/11/2023] Open
Abstract
The NR4A is a subfamily of the orphan nuclear receptors (NR) superfamily constituted by three well characterized members: Nur77 (NR4A1), Nurr1 (NR4A2) and Nor 1 (NR4A3). They are implicated in numerous biological processes as DNA repair, arteriosclerosis, cell apoptosis, carcinogenesis and metabolism. Several studies have demonstrated the role of this subfamily on glucose metabolism, insulin sensitivity and energy balance. These studies have focused mainly in liver and skeletal muscle. However, its potential role in white adipose tissue (WAT), one of the most important tissues involved in the regulation of energy homeostasis, is not well-studied. The aim of this work was to elucidate the regulation of NR4A in WAT under different physiological and pathophysiological settings involved in energy balance such as fasting, postnatal development, gender, hormonal deficiency and pregnancy. We compared NR4A mRNA expression of Nur77, Nurr1 and Nor 1 and found a clear regulation by nutritional status, since the expression of the 3 isoforms is increased after fasting in a leptin-independent manner and sex steroid hormones also modulate NR4A expression in males and females. Our findings indicate that NR4A are regulated by different physiological and pathophysiological settings known to be associated with marked alterations in glucose metabolism and energy status.
Collapse
Affiliation(s)
- S Pérez-Sieira
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - M López
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - R Nogueiras
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - S Tovar
- 1] Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, 15782, Spain [2] CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| |
Collapse
|
12
|
Bays HE. Lorcaserin: drug profile and illustrative model of the regulatory challenges of weight-loss drug development. Expert Rev Cardiovasc Ther 2014; 9:265-77. [DOI: 10.1586/erc.10.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Close AF, Rouillard C, Buteau J. NR4A orphan nuclear receptors in glucose homeostasis: a minireview. DIABETES & METABOLISM 2013; 39:478-84. [PMID: 24075454 DOI: 10.1016/j.diabet.2013.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 01/23/2023]
Abstract
Type 2 diabetes mellitus is a disorder characterized by insulin resistance and a relative deficit in insulin secretion, both of which result in elevated blood glucose. Understanding the molecular mechanisms underlying the pathophysiology of diabetes could lead to the development of new therapeutic approaches. An ever-growing body of evidence suggests that members of the NR4A family of nuclear receptors could play a pivotal role in glucose homeostasis. This review aims to present and discuss advances so far in the evaluation of the potential role of NR4A in the regulation of glucose homeostasis and the development of type 2 diabetes.
Collapse
Affiliation(s)
- A F Close
- Department of AFNS, University of Alberta and Alberta Diabetes Institute, Li Ka Shing Centre, Edmonton, AB, T6G 2E1, Canada
| | | | | |
Collapse
|
14
|
Alemany M. Adjustment to dietary energy availability: from starvation to overnutrition. RSC Adv 2013. [DOI: 10.1039/c2ra21165c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
15
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
16
|
Hypothalamic orexin and pro-opiomelanocortin activities are essential for the anorexic effects of m-chlorophenylpiperazine in mice. Int J Neuropsychopharmacol 2010; 13:1261-7. [PMID: 20587130 DOI: 10.1017/s1461145710000672] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypothalamic pro-opiomelanocortin (POMC) activity is reportedly essential for satiety signalling downstream of serotonin (5-HT). Here we show that food-restricted wild-type mice, which exhibited decreased hypothalamic POMC expression and increased hypothalamic orexin expression, were responsive to m-chlorophenylpiperazine (m-CPP), a 5-HT(2C/1B) receptor agonist, leading to anorexia, whereas food-restricted A(y) mice with decreased hypothalamic POMC and orexin expression, were not. Injection of POMC small interfering RNA (siRNA) oligonucleotide+orexin siRNA oligonucleotide into the third cerebral ventricle was unresponsive to mCPP-induced anorexia, whereas a single injection of POMC or orexin siRNA oligonucleotides elicited a response. The injection of POMC siRNA oligonucleotides suppressed the anorexic effects of sibutramine, a serotonin and noradrenaline re-uptake inhibitor. The injection of orexin siRNA oligonucleotides suppressed the hyperphagia induced by the injection of POMC siRNA oligonucleotides. These findings suggest that functional hypothalamic POMC and orexin activity has a critical role in satiety signalling of mCPP in mice.
Collapse
|
17
|
Pearen MA, Muscat GEO. Minireview: Nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol Endocrinol 2010; 24:1891-903. [PMID: 20392876 DOI: 10.1210/me.2010-0015] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Numerous members of the nuclear hormone receptor (NR) superfamily have been demonstrated to regulate metabolic function in a cell- and tissue-specific manner. This review brings together recent studies that have associated members of the NR superfamily, the orphan NR4A subgroup, with the regulation of metabolic function and disease. The orphan NR4A subgroup includes Nur77 (NR4A1), Nurr1 (NR4A2), and Nor-1 (NR4A3). Expression of these receptors is induced in multiple tissues by a diverse range of stimuli, including stimuli associated with metabolic function, such as: β-adrenoceptor agonists, cold, fatty acids, glucose, insulin, cholesterol, and thiazolidinediones. In vitro and in vivo gain- and loss-of-function studies in major metabolic tissues (including skeletal muscle, adipose, and liver cells and tissues) have associated the NR4A subgroup with specific aspects of lipid, carbohydrate, and energy homeostasis. Most excitingly, although these orphan receptors do not have known endogenous ligands, several small molecule agonists have recently been identified. The preliminary studies reviewed in this manuscript suggest that therapeutic exploitation of the NR4A subgroup may show utility against dyslipidemia, obesity, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Michael A Pearen
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia.
| | | |
Collapse
|
18
|
Yakabi K, Kurosawa S, Tamai M, Yuzurihara M, Nahata M, Ohno S, Ro S, Kato S, Aoyama T, Sakurada T, Takabayashi H, Hattori T. Rikkunshito and 5-HT2C receptor antagonist improve cisplatin-induced anorexia via hypothalamic ghrelin interaction. ACTA ACUST UNITED AC 2010; 161:97-105. [PMID: 20171995 DOI: 10.1016/j.regpep.2010.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 02/10/2010] [Accepted: 02/11/2010] [Indexed: 12/24/2022]
Abstract
Circulating ghrelin concentration regulates appetite behavior, but no study thus far has focused on the role of central ghrelin in anorexia after chemotherapy. To clarify the action mechanisms of rikkunshito (RKT), a traditional Japanese medicine, on cisplatin-induced anorexia, we attempted to elucidate its effect on hypothalamic ghrelin receptor expression in cisplatin-induced anorexia. We first examined the effects of an intracerebroventricular (ICV) injection of exogenous ghrelin on food intake with or without cisplatin treatment, and the effects of cisplatin or m-chlorophenylpiperazine (mCPP), a 5-HT2C receptor agonist, on hypothalamic growth hormone secretagogue receptor 1a (GHS-R1a) mRNA expression. To identify the mechanism of cisplatin-induced decrease in hypothalamic GHS-R1a mRNA expression, we evaluated the effects of SB242084HCl, a 5-HT2C receptor antagonist, and RKT on hypothalamic GHS-R1a gene expression, along with the effect of coadministration of a GHS-R1a antagonist on decreased food intake. Compared to vehicle controls, an ICV-injected rat ghrelin failed to inhibit the decrease in food intake in cisplatin-treated rats. Hypothalamic GHS-R1a gene expression was significantly reduced after cisplatin or mCPP treatment, and the induced decrease was reversed by SB242084HCl or RKT, but not granisetron or ondansetron, both of which are 5-HT3 receptor antagonists. Their suppressive effect on the decrease in food intake was abolished by coadministration of the GHS-R1a antagonist. Administration of RKT or SB242084HCl reversed the decrease in food intake induced by mCPP injection. The improvement by RKT on decreased food intake after cisplatin treatment was partly mediated by hesperidin and isoliquiritigenin, components of RKT. Cisplatin-induced anorexia may worsen because of decreased hypothalamic GHS-R1a gene expression. A 5-HT2C receptor antagonist and RKT suppressed cisplatin-induced anorexia by inhibiting reduction of GHS-R1a signal transduction in the hypothalamus.
Collapse
Affiliation(s)
- Koji Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, 1981 Tsujido-machi, Kamoda, Kawagoe-city, Saitama 350-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|