1
|
Lomivorotov V, Ponomarev D, Boboshko V, Shmyrev V, Ismoilov S, Efremov S, Kamenshchikov N, Akselrod B, Pasyuga V, Urusov D, Ovezov A, Evdokimov M, Turchaninov A, Bogachev-Prokofiev A, Bukamal N, Afifi S, Belletti A, Bellomo R, Landoni G. Calcium administration In patients undergoing CardiAc suRgery under cardiopulmonary bypasS (ICARUS trial): Rationale and design of a randomized controlled trial. Contemp Clin Trials Commun 2021; 23:100835. [PMID: 34485754 PMCID: PMC8406154 DOI: 10.1016/j.conctc.2021.100835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Weaning from cardiopulmonary bypass (CPB) is a critical step of any cardiac surgical procedure and often requires pharmacologic intervention. Calcium ions are pivotal elements for the excitation-contraction coupling process of cardiac myocytes. Thus, calcium administration might be helpful during weaning from CPB. Methods We describe a multicenter, placebo-controlled, double blind randomized clinical trial to assess the effect of calcium chloride on the need for inotropic support among adult patients during weaning from CPB. The experimental group (409 patients) will receive 15 mg/kg of calcium chloride. The control group (409 patients) will receive an equivalent volume of 0.9% sodium chloride. Both drugs will be administered intravenously as a bolus at the beginning of weaning from CPB. Results The primary outcome will be the need for inotropic support between termination of CPB and completion of surgery. Secondary outcomes will be: duration of inotropic support, vasoactive-inotropic score 30 min after transfer to intensive care unit and on postoperative day 1, plasma alpha-amylase on postoperative day 1, plasma Ca2+ concentration immediately before and 10–15 min after calcium chloride administration, non-fatal myocardial infarction, blood loss on postoperative day 1, need for transfusion of red blood cells, signs of myocardial ischemia on electrocardiogram after arrival to intensive care unit, all-cause mortality at 30 days or during hospital stay if this is longer than 30 days. Discussion This trial is designed to assess whether intravenous calcium chloride administration could reduce the need for inotropic support after cardiopulmonary bypass weaning among adults undergoing cardiac surgery.
Collapse
Affiliation(s)
- Vladimir Lomivorotov
- E. Meshalkin National Medical Research Centre, Novosibirsk, Russian Federation
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Dmitry Ponomarev
- E. Meshalkin National Medical Research Centre, Novosibirsk, Russian Federation
- Corresponding author.
| | - Vladimir Boboshko
- E. Meshalkin National Medical Research Centre, Novosibirsk, Russian Federation
| | - Vladimir Shmyrev
- E. Meshalkin National Medical Research Centre, Novosibirsk, Russian Federation
| | - Samandar Ismoilov
- E. Meshalkin National Medical Research Centre, Novosibirsk, Russian Federation
| | - Sergey Efremov
- Saint Petersburg State University Hospital, Saint Petersburg, Russian Federation
| | - Nikolay Kamenshchikov
- Сardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Boris Akselrod
- Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Vadim Pasyuga
- Federal Center for Cardiovascular Surgery, Astrakhan, Russian Federation
| | - Dmitry Urusov
- District Clinical Hospital, Khanty-Mansiysk, Russian Federation
| | - Alexey Ovezov
- Moscow Regional Research and Clinical Institute (MONIKI), Moscow, Russian Federation
| | - Mikhail Evdokimov
- Federal Center for Cardiovascular Surgery, Penza, Russian Federation
| | | | | | - Nazar Bukamal
- Sh. Mohammed Bin Khalifa Bin Sulman Al-Khalifa Cardiac Center, Awali, Bahrain
| | - Sarah Afifi
- King Abdullah Medical City, Makkah, Saudi Arabia
| | | | | | - Giovanni Landoni
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Single Bolus Rosuvastatin Accelerates Calcium Uptake and Attenuates Conduction Inhomogeneity in Failing Rabbit Hearts With Regional Ischemia-Reperfusion Injury. J Cardiovasc Pharmacol 2019; 75:64-74. [PMID: 31842025 DOI: 10.1097/fjc.0000000000000751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute statin therapy reduces myocardial ischemia/reperfusion (IR) injury-induced ventricular fibrillation (VF), but the underlying electrophysiological mechanisms remain unclear. This study sought to investigate the antiarrhythmic effects of a single bolus rosuvastatin injection in failing rabbit hearts with IR injury and to unveil the underlying molecular mechanisms. Rabbits were divided into rosuvastatin, rosuvastatin + L-NAME, control, and L-NAME groups. Intravenous bolus rosuvastatin (0.5 mg/kg) and/or L-NAME (10 mg/kg) injections were administered 1 hour and 15 minutes before surgery, respectively. Heart failure was induced using rapid ventricular pacing. Under general anesthesia with isoflurane, an IR model was created by coronary artery ligation for 30 minutes, followed by reperfusion for 15 minutes. Plasma NO end product levels were measured during IR. Then, hearts were excised and Langendorff-perfused for optical mapping studies. Cardiac tissues were sampled for Western blot analysis. Rosuvastatin increased plasma NO levels during IR, which was abrogated by L-NAME. Spontaneous VF during IR was suppressed by rosuvastatin (P < 0.001). Intracellular calcium (Cai) decay and conduction velocity were significantly slower in the IR zone. Rosuvastatin accelerated Cai decay, ameliorated conduction inhomogeneity, and reduced the inducibility of spatially discordant alternans and VF significantly. Western blots revealed significantly higher expression of enhancing endothelial NO-synthase and phosphorylated enhancing endothelial NO-synthase proteins in the Rosuvastatin group. Furthermore, SERCA2a, phosphorylated connexin43, and phosphorylated phospholamban were downregulated in the IR zone, which was attenuated or reversed by rosuvastatin. Acute rosuvastatin therapy before ischemia reduced IR-induced VF by improving SERCA2a function and ameliorating conduction disturbance in the IR zone.
Collapse
|
4
|
Rorabaugh BR, Chakravarti B, Mabe NW, Seeley SL, Bui AD, Yang J, Watts SW, Neubig RR, Fisher RA. Regulator of G Protein Signaling 6 Protects the Heart from Ischemic Injury. J Pharmacol Exp Ther 2017; 360:409-416. [PMID: 28035008 PMCID: PMC5325075 DOI: 10.1124/jpet.116.238345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/28/2016] [Indexed: 01/07/2023] Open
Abstract
Gαi-coupled receptors play important roles in protecting the heart from ischemic injury. Regulator of G protein signaling (RGS) proteins suppress Gαi signaling by accelerating the GTPase activity of Gαi subunits. However, the roles of individual RGS proteins in modulating ischemic injury are unknown. In this study, we investigated the effect of RGS6 deletion on myocardial sensitivity to ischemic injury. Hearts from RGS6 knockout (RGS6-/-) and RGS6 wild-type (RGS6+/+) mice were subjected to 30 minutes of ischemia and 2 hours of reperfusion on a Langendorff heart apparatus. Infarcts in RGS6-/- hearts were significantly larger than infarcts in RGS6+/+ hearts. RGS6-/- hearts also exhibited increased phosphorylation of β2-adrenergic receptors and G protein-coupled receptor kinase 2 (GRK2). Mitochondrial GRK2 as well as caspase-3 cleavage were increased significantly in RGS6-/- hearts compared with RGS6+/+ hearts after ischemia. Chronic propranolol treatment of mice prevented the observed increases in ischemic injury and the GRK2 phosphorylation observed in RGS6-/- hearts. Our findings suggest that loss of RGS6 predisposes the ventricle to prodeath signaling through a β2AR-GRK2-dependent signaling mechanism, and they provide evidence for a protective role of RGS6 in the ischemic heart. Individuals expressing genetic polymorphisms that suppress the activity of RGS6 may be at increased risk of cardiac ischemic injury. Furthermore, the development of agents that increase RGS6 expression or activity might provide a novel strategy for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Boyd R Rorabaugh
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Bandana Chakravarti
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Nathaniel W Mabe
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Sarah L Seeley
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Albert D Bui
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Jianqi Yang
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Stephanie W Watts
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Richard R Neubig
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| | - Rory A Fisher
- Department of Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University, Ada, Ohio (B.R.R., N.W.M., S.L.S., A.D.B.); Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa (B.C., J.Y., R.A.F.); and Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan (S.W.W., R.R.N.)
| |
Collapse
|
5
|
Dexmedetomidine preconditioning may attenuate myocardial ischemia/reperfusion injury by down-regulating the HMGB1-TLR4-MyD88-NF-кB signaling pathway. PLoS One 2017; 12:e0172006. [PMID: 28222157 PMCID: PMC5319750 DOI: 10.1371/journal.pone.0172006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/30/2017] [Indexed: 12/21/2022] Open
Abstract
Aims To investigate whether dexmedetomidine (DEX) preconditioning could alleviate the inflammation caused by myocardial ischemia/reperfusion (I/R) injury by reducing HMGB1-TLR4-MyD88-NF-кB signaling. Methods Seventy rats were randomly assigned into five groups: sham group, myocardial I/R group (I/R), DEX+I/R group (DEX), DEX+yohimbine+I/R group (DEX/YOH), and yohimbine+I/R group (YOH). Animals were subjected to 30 min of ischemia induced by occluding the left anterior descending artery followed by 120 min of reperfusion. Myocardial infarct size and histological scores were evaluated. The levels of IL-6 and TNF-α in serum and myocardium were quantified by enzyme-linked immunosorbent assay, and expression of HMGB1, TLR4, MyD88, IκB and NF-κB in the myocardial I/R area were determined with Western blot and immunocytochemistry. Results Myocardial infarct sizes, histological scores, levels of circulating and myocardial IL-6 and TNF-α, the expression of HMGB1, TLR4, MyD88 and NF-κB, and the degradation of IκB were significantly increased in the I/R group compared with the sham group (P<0.01). DEX preconditioning significantly reduced the myocardial infarct size and histological scores (P<0.01 vs. I/R group). Similarly, the serum and myocardial levels of IL-6 and TNF-α, the expression of HMGB1, TLR4, MyD88 and NF-κB, and the degradation of IκB were significantly reduced in the DEX group (P<0.01 vs. I/R group). These effects were partly reversed by yohimbine, a selective α2-adrenergic receptor antagonist, while yohimbine alone had no significant effect on any of the above indicators. Conclusion DEX preconditioning reduces myocardial I/R injury in part by attenuating inflammation, which may be attributed to the downregulation of the HMGB1-TLR4-MyD88-NF-кB signaling pathway mediated by the α2-adrenergic receptor activation.
Collapse
|
6
|
Broskova Z, Knezl V. Protective effect of novel pyridoindole derivatives on ischemia/reperfusion injury of the isolated rat heart. Pharmacol Rep 2012; 63:967-74. [PMID: 22001984 DOI: 10.1016/s1734-1140(11)70612-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/18/2011] [Indexed: 10/25/2022]
Abstract
Generation of reactive oxygen species is a major, well-known cause of heart injury induced by ischemia-reperfusion. This injury is manifested through myocardial stunning, reperfusion and lethal reperfusion injury of cardiocytes. The pyridoindole stobadine has been shown to exhibit significant antioxidant, free-radical scavenging and hypoxic-tissue-protecting properties. The present study examined the effects of stobadine and two novel derivatives, SMe1 and SMe1EC2, which exhibit improved pharmacodynamic and toxicity profiles, on the functional properties and reperfusion dysrhythmias of the isolated rat heart in ischemia-reperfusion conditions. All experiments were performed on isolated Langendorff-perfused hearts isolated from 3-month-old male Wistar rats. After 15 min of stabilization, the hearts were subjected to a 30-minute period of global no-flow ischemia, followed by a 30-minute reperfusion period. Stobadine, SMe1 and SMe1EC2 were applied at a concentration of 1 x 10(-5) 10 min before the onset of ischemia, and during reperfusion through the perfusion medium. As compared to the untreated group, addition of SMe1EC2 during reperfusion significantly increased left ventricular developed pressure, decreased pathologically elevated left ventricular end-diastolic pressure and enhanced recovery of the stunned myocardium after ischemia. Both SMe1 and stobadine failed to influence these parameters; however, all derivatives tested inhibited serious life-threatening reperfusion dysrhythmias such as ventricular tachycardia and ventricular fibrillation. Our findings suggest that SMe1EC2 promotes an improved recovery of the left ventricular function following ischemia compared to either stobadine or SMe1. However, both SMe1EC2 and SMe1 manifested a significant anti-dysrhythmic effect comparable with that of stobadine and partially reduced myocardial ischemia-reperfusion-induced injury.
Collapse
Affiliation(s)
- Zuzana Broskova
- Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovak Republic.
| | | |
Collapse
|