1
|
Ogdahl JL, Chien P. Allosteric modulation of the Lon protease via ssDNA binding and local charge changes. J Biol Chem 2025; 301:107993. [PMID: 39542252 PMCID: PMC11719849 DOI: 10.1016/j.jbc.2024.107993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
The ATPase Associated with diverse cellular Activities (AAA+) family of proteases play crucial roles in cellular proteolysis and stress responses. Like other AAA + proteases, the Lon protease is known to be allosterically regulated by nucleotide and substrate binding. Although it was originally classified as a DNA binding protein, the impact of DNA binding on Lon activity is unclear. In this study, we characterize the regulation of Lon by single-stranded DNA (ssDNA) binding and serendipitously identify general activation strategies for Lon. Upon binding to ssDNA, Lon's ATP hydrolysis rate increases due to improved nucleotide binding, leading to enhanced degradation of protein substrates, including physiologically important targets. We demonstrate that mutations in basic residues that are crucial for Lon's DNA binding not only reduce ssDNA binding but result in charge-specific consequences on Lon activity. Introducing negative charge at these sites induces activation akin to that induced by ssDNA binding, whereas neutralizing the charge reduces Lon's activity. Based on single molecule measurements, we find this change in activity correlated with changes in Lon oligomerization. Our study provides insights into the complex regulation of the Lon protease driven by electrostatic contributions from either DNA binding or mutations.
Collapse
Affiliation(s)
- Justyne L Ogdahl
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, University of Massachusetts, Amherst, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, University of Massachusetts, Amherst, USA.
| |
Collapse
|
2
|
Ogdahl JL, Chien P. Allosteric modulation of the Lon protease by effector binding and local charges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611642. [PMID: 39282454 PMCID: PMC11398467 DOI: 10.1101/2024.09.06.611642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The ATPase Associated with diverse cellular Activities (AAA+) family of proteases play crucial roles in cellular proteolysis and stress responses. Like other AAA+ proteases, the Lon protease is known to be allosterically regulated by nucleotide and substrate binding. Although it was originally classified as a DNA binding protein, the impact of DNA binding on Lon activity is unclear. In this study, we characterize the regulation of Lon by single-stranded DNA (ssDNA) binding and serendipitously identify general activation strategies for Lon. Upon binding to ssDNA, Lon's ATP hydrolysis rate increases due to improved nucleotide binding, leading to enhanced degradation of protein substrates, including physiologically important targets. We demonstrate that mutations in basic residues that are crucial for Lon's DNA binding not only reduces ssDNA binding but result in charge-specific consequences on Lon activity. Introducing negative charge at these sites induces activation akin to that induced by ssDNA binding, whereas neutralizing the charge reduces Lon's activity. Based on single molecule measurements we find that this change in activity is correlated with changes in Lon oligomerization. Our study provides insights into the complex regulation of the Lon protease driven by electrostatic contributions from either DNA binding or mutations.
Collapse
Affiliation(s)
- Justyne L Ogdahl
- University of Massachusetts, Amherst, Department of Biochemistry and Molecular Biology Molecular and Cellular Biology Program
| | - Peter Chien
- University of Massachusetts, Amherst, Department of Biochemistry and Molecular Biology Molecular and Cellular Biology Program
| |
Collapse
|
3
|
Roles of LonP1 in Oral-Maxillofacial Developmental Defects and Tumors: A Novel Insight. Int J Mol Sci 2022; 23:ijms232113370. [PMID: 36362158 PMCID: PMC9657610 DOI: 10.3390/ijms232113370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Recent studies have indicated a central role for LonP1 in mitochondrial function. Its physiological functions include proteolysis, acting as a molecular chaperone, binding mitochondrial DNA, and being involved in cellular respiration, cellular metabolism, and oxidative stress. Given its vital role in energy metabolism, LonP1 has been suggested to be associated with multi-system neoplasms and developmental disorders. In this study, we investigated the roles, possible mechanisms of action, and therapeutic roles of LonP1 in oral and maxillofacial tumor development. LonP1 was highly expressed in oral-maxillofacial cancers and regulated their development through a sig-naling network. LonP1 may therefore be a promising anticancer therapy target. Mutations in LONP1 have been found to be involved in the etiology of cerebral, ocular, dental, auricular, and skeletal syndrome (CODAS). Only patients carrying specific LONP1 mutations have certain dental abnormalities (delayed eruption and abnormal morphology). LonP1 is therefore a novel factor in the development of oral and maxillofacial tumors. Greater research should therefore be conducted on the diagnosis and therapy of LonP1-related diseases to further define LonP1-associated oral phenotypes and their underlying molecular mechanisms.
Collapse
|
4
|
Ropelewska M, Gross MH, Konieczny I. DNA and Polyphosphate in Directed Proteolysis for DNA Replication Control. Front Microbiol 2020; 11:585717. [PMID: 33123115 PMCID: PMC7566177 DOI: 10.3389/fmicb.2020.585717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 12/03/2022] Open
Abstract
The strict control of bacterial cell proliferation by proteolysis is vital to coordinate cell cycle processes and to adapt to environmental changes. ATP-dependent proteases of the AAA + family are molecular machineries that contribute to cellular proteostasis. Their activity is important to control the level of various proteins, including those that are essential for the regulation of DNA replication. Since the process of proteolysis is irreversible, the protease activity must be tightly regulated and directed toward a specific substrate at the exact time and space in a cell. In our mini review, we discuss the impact of phosphate-containing molecules like DNA and inorganic polyphosphate (PolyP), accumulated during stress, on protease activities. We describe how the directed proteolysis of essential replication proteins contributes to the regulation of DNA replication under normal and stress conditions in bacteria.
Collapse
Affiliation(s)
- Malgorzata Ropelewska
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Marta H Gross
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Igor Konieczny
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
5
|
Alva V, Lupas AN. Histones predate the split between bacteria and archaea. Bioinformatics 2020; 35:2349-2353. [PMID: 30520969 DOI: 10.1093/bioinformatics/bty1000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 02/02/2023] Open
Abstract
MOTIVATION Histones form octameric complexes called nucleosomes, which organize the genomic DNA of eukaryotes into chromatin. Each nucleosome comprises two copies each of the histones H2A, H2B, H3 and H4, which share a common ancestry. Although histones were initially thought to be a eukaryotic innovation, the subsequent identification of archaeal homologs led to the notion that histones emerged before the divergence of archaea and eukaryotes. RESULTS Here, we report the detection and classification of two new groups of histone homologs, which are present in both archaea and bacteria. Proteins in one group consist of two histone subunits welded into single-chain pseudodimers, whereas in the other they resemble eukaryotic core histone subunits and show sequence patterns characteristic of DNA binding. The sequences come from a broad spectrum of deeply-branching lineages, excluding their genesis by horizontal gene transfer. Our results extend the origin of histones to the last universal common ancestor. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
6
|
Venkatesh S, Suzuki CK. Cell stress management by the mitochondrial LonP1 protease - Insights into mitigating developmental, oncogenic and cardiac stress. Mitochondrion 2019; 51:46-61. [PMID: 31756517 DOI: 10.1016/j.mito.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 11/15/2022]
Abstract
Mitochondrial LonP1 is an essential stress response protease that mediates mitochondrial proteostasis, metabolism and bioenergetics. Homozygous and compound heterozygous variants in the LONP1 gene encoding the LonP1 protease have recently been shown to cause a diverse spectrum of human pathologies, ranging from classical mitochondrial disease phenotypes, profound neurologic impairment and multi-organ dysfunctions, some of which are uncommon to mitochondrial disorders. In this review, we focus primarily on human LonP1 and discuss findings, which demonstrate its multidimensional roles in maintaining mitochondrial proteostasis and adapting cells to metabolic flux and stress during normal physiology and disease processes. We also discuss emerging roles of LonP1 in responding to developmental, oncogenic and cardiac stress.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|
7
|
Yus E, Lloréns-Rico V, Martínez S, Gallo C, Eilers H, Blötz C, Stülke J, Lluch-Senar M, Serrano L. Determination of the Gene Regulatory Network of a Genome-Reduced Bacterium Highlights Alternative Regulation Independent of Transcription Factors. Cell Syst 2019; 9:143-158.e13. [PMID: 31445891 PMCID: PMC6721554 DOI: 10.1016/j.cels.2019.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/14/2019] [Accepted: 06/27/2019] [Indexed: 11/30/2022]
Abstract
Here, we determined the relative importance of different transcriptional mechanisms in the genome-reduced bacterium Mycoplasma pneumoniae, by employing an array of experimental techniques under multiple genetic and environmental perturbations. Of the 143 genes tested (21% of the bacterium’s annotated proteins), only 55% showed an altered phenotype, highlighting the robustness of biological systems. We identified nine transcription factors (TFs) and their targets, representing 43% of the genome, and 16 regulators that indirectly affect transcription. Only 20% of transcriptional regulation is mediated by canonical TFs when responding to perturbations. Using a Random Forest, we quantified the non-redundant contribution of different mechanisms such as supercoiling, metabolic control, RNA degradation, and chromosome topology to transcriptional changes. Model-predicted gene changes correlate well with experimental data in 95% of the tested perturbations, explaining up to 70% of the total variance when also considering noise. This analysis highlights the importance of considering non-TF-mediated regulation when engineering bacteria. Full comprehensive reconstruction of a bacterial gene regulatory network achieved Genome-reduced bacterium Mycoplasma pneumoniae is robust to genetic perturbations Large part of transcription regulation in bacteria is transcription-factor independent Transcription-factor-independent regulation has a smaller dynamic range
Collapse
Affiliation(s)
- Eva Yus
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain.
| | - Verónica Lloréns-Rico
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain.
| | - Sira Martínez
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Carolina Gallo
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Hinnerk Eilers
- Department for General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Cedric Blötz
- Department for General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Jörg Stülke
- Department for General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Doctor Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
8
|
Inoue M, Fukui K, Fujii Y, Nakagawa N, Yano T, Kuramitsu S, Masui R. The Lon protease-like domain in the bacterial RecA paralog RadA is required for DNA binding and repair. J Biol Chem 2017; 292:9801-9814. [PMID: 28432121 DOI: 10.1074/jbc.m116.770180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/16/2017] [Indexed: 11/06/2022] Open
Abstract
Homologous recombination (HR) plays an essential role in the maintenance of genome integrity. RecA/Rad51 paralogs have been recognized as an important factor of HR. Among them, only one bacterial RecA/Rad51 paralog, RadA, is involved in HR as an accessory factor of RecA recombinase. RadA has a unique Lon protease-like domain (LonC) at its C terminus, in addition to a RecA-like ATPase domain. Unlike Lon protease, RadA's LonC domain does not show protease activity but is still essential for RadA-mediated DNA repair. Reconciling these two facts has been difficult because RadA's tertiary structure and molecular function are unknown. Here, we describe the hexameric ring structure of RadA's LonC domain, as determined by X-ray crystallography. The structure revealed the two positively charged regions unique to the LonC domain of RadA are located at the intersubunit cleft and the central hole of a hexameric ring. Surprisingly, a functional domain analysis demonstrated the LonC domain of RadA binds DNA, with site-directed mutagenesis showing that the two positively charged regions are critical for this DNA-binding activity. Interestingly, only the intersubunit cleft was required for the DNA-dependent stimulation of ATPase activity of RadA, and at least the central hole was essential for DNA repair function. Our data provide the structural and functional features of the LonC domain and their function in RadA-mediated DNA repair.
Collapse
Affiliation(s)
- Masao Inoue
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Kenji Fukui
- the Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686
| | - Yuki Fujii
- the Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, and
| | - Noriko Nakagawa
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Takato Yano
- the Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka 569-8686
| | - Seiki Kuramitsu
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043
| | - Ryoji Masui
- the Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
9
|
Karlowicz A, Wegrzyn K, Gross M, Kaczynska D, Ropelewska M, Siemiątkowska M, Bujnicki JM, Konieczny I. Defining the crucial domain and amino acid residues in bacterial Lon protease for DNA binding and processing of DNA-interacting substrates. J Biol Chem 2017; 292:7507-7518. [PMID: 28292931 DOI: 10.1074/jbc.m116.766709] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/14/2017] [Indexed: 12/19/2022] Open
Abstract
Lon protease previously has been shown to interact with DNA, but the role of this interaction for Lon proteolytic activity has not been characterized. In this study, we used truncated Escherichia coli Lon constructs, bioinformatics analysis, and site-directed mutagenesis to identify Lon domains and residues crucial for Lon binding with DNA and effects on Lon proteolytic activity. We found that deletion of Lon's ATPase domain abrogated interactions with DNA. Substitution of positively charged amino acids in this domain in full-length Lon with residues conferring a net negative charge disrupted binding of Lon to DNA. These changes also affected the degradation of nucleic acid-binding protein substrates of Lon, intracellular localization of Lon, and cell morphology. In vivo tests revealed that Lon-DNA interactions are essential for Lon activity in cell division control. In summary, we demonstrate that the ability of Lon to bind DNA is determined by its ATPase domain, that this binding is required for processing protein substrates in nucleoprotein complexes, and that Lon may help regulate DNA replication in response to growth conditions.
Collapse
Affiliation(s)
- Anna Karlowicz
- From the Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Wegrzyn
- From the Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Marta Gross
- From the Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Dagmara Kaczynska
- From the Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Malgorzata Ropelewska
- From the Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Małgorzata Siemiątkowska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland, and
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland, and.,Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Igor Konieczny
- From the Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland,
| |
Collapse
|
10
|
Chen YD, Wu SH, Hsu CH. Backbone resonance assignments of the α sub-domain of Brevibacillus thermoruber Lon protease. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:233-6. [PMID: 23771856 DOI: 10.1007/s12104-013-9490-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/03/2013] [Indexed: 05/24/2023]
Abstract
Lon is an ATPases associated with diverse cellular activities protease and belongs to a unique group that binds DNA. The α sub-domain of Lon protease is responsible for DNA-binding, but the structural information for its DNA-recognition mode is still limited. Here, we report (1)H, (15)N and (13)C backbone assignment for the α sub-domain from Brevibacillus thermoruber Lon protease as the basis for the elucidation of its structure and interactions with DNA, necessary for understanding the allosteric regulatory mechanism of the enzymatic function.
Collapse
Affiliation(s)
- Yu-Da Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | | | | |
Collapse
|
11
|
Lee AYL, Chen YD, Chang YY, Lin YC, Chang CF, Huang SJ, Wu SH, Hsu CH. Structural basis for DNA-mediated allosteric regulation facilitated by the AAA+module of Lon protease. ACTA ACUST UNITED AC 2014; 70:218-30. [DOI: 10.1107/s139900471302631x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/23/2013] [Indexed: 01/07/2023]
Abstract
Lon belongs to a unique group of AAA+proteases that bind DNA. However, the DNA-mediated regulation of Lon remains elusive. Here, the crystal structure of the α subdomain of the Lon protease fromBrevibacillus thermoruber(Bt-Lon) is presented, together with biochemical data, and the DNA-binding mode is delineated, showing that Arg518, Arg557 and Arg566 play a crucial role in DNA binding. Electrostatic interactions contributed by arginine residues in the AAA+module are suggested to be important to DNA binding and allosteric regulation of enzymatic activities. Intriguingly, Arg557, which directly binds DNA in the α subdomain, has a dual role in the negative regulation of ATPase stimulation by DNA and in the domain–domain communication in allosteric regulation of Bt-Lon by substrate. In conclusion, structural and biochemical evidence is provided to show that electrostatic interaction in the AAA+module is important for DNA binding by Lon and allosteric regulation of its enzymatic activities by DNA and substrate.
Collapse
|
12
|
Chen YD, Chang YY, Wu SH, Hsu CH. Crystallization and preliminary X-ray diffraction analysis of the α subdomain of Lon protease from Brevibacillus thermoruber. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:899-901. [PMID: 23908038 DOI: 10.1107/s1744309113017958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/29/2013] [Indexed: 11/17/2023]
Abstract
DNA-binding ability has previously been reported as a novel function for the thermostable Lon protease from Brevibacillus thermoruber WR-249 (Bt-Lon), and the α subdomain (amino acids 491-605) of Bt-Lon has been identified as being responsible for DNA binding. However, the physiological role and DNA-recognition mode of Bt-Lon still remain unclear. In this study, the crystallization and preliminary crystallographic analysis of the Bt-Lon α subdomain are presented. Native diffraction data to 2.88 Å resolution were obtained from a vitrified crystal at 100 K on the BL13C1 beamline at the NSRRC (National Synchrotron Radiation Research Center), Taiwan. The crystals belonged to space group P23, with unit-cell parameters a = b = c = 94.28 Å. Solvent-content calculations and molecular-replacement results suggest that there are two molecules of Bt-Lon α subdomain per asymmetric unit.
Collapse
Affiliation(s)
- Yu-Da Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
13
|
Matsushima Y, Kaguni LS. Matrix proteases in mitochondrial DNA function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1080-7. [PMID: 22172992 DOI: 10.1016/j.bbagrm.2011.11.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 10/14/2022]
Abstract
Lon, ClpXP and m-AAA are the three major ATP-dependent proteases in the mitochondrial matrix. All three are involved in general quality control by degrading damaged or abnormal proteins. In addition to this role, they are proposed to serve roles in mitochondrial DNA functions including packaging and stability, replication, transcription and translation. In particular, Lon has been implicated in mtDNA metabolism in yeast, fly and humans. Here, we review the role of Lon protease in mitochondrial DNA functions, and discuss a putative physiological role for mitochondrial transcription factor A (TFAM) degradation by Lon protease. We also discuss the possible roles of m-AAA and ClpXP in mitochondrial DNA functions, and the putative candidate substrates for the three matrix proteases. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Yuichi Matsushima
- Department of Mental Retardation & Birth Defect Research, National Institute of Neuroscience, National Center of Neurology & Psychiatry, Tokyo 187-8502, Japan
| | | |
Collapse
|
14
|
Venkatesh S, Lee J, Singh K, Lee I, Suzuki CK. Multitasking in the mitochondrion by the ATP-dependent Lon protease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:56-66. [PMID: 22119779 DOI: 10.1016/j.bbamcr.2011.11.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/30/2011] [Accepted: 11/06/2011] [Indexed: 01/13/2023]
Abstract
The AAA(+) Lon protease is a soluble single-ringed homo-oligomer, which represents the most streamlined operational unit mediating ATP-dependent proteolysis. Despite its simplicity, the architecture of Lon proteases exhibits a species-specific diversity. Homology modeling provides insights into the structural features that distinguish bacterial and human Lon proteases as hexameric complexes from yeast Lon, which is uniquely heptameric. The best-understood functions of mitochondrial Lon are linked to maintaining proteostasis under normal metabolic conditions, and preventing proteotoxicity during environmental and cellular stress. An intriguing property of human Lon is its specific binding to G-quadruplex DNA, and its association with the mitochondrial genome in cultured cells. A fraction of Lon preferentially binds to the control region of mitochondrial DNA where transcription and replication are initiated. Here, we present an overview of the diverse functions of mitochondrial Lon, as well as speculative perspectives on its role in protein and mtDNA quality control.
Collapse
Affiliation(s)
- Sundararajan Venkatesh
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB E-633, Newark, New Jersey 07103 USA
| | | | | | | | | |
Collapse
|
15
|
Kubik S, Wegrzyn K, Pierechod M, Konieczny I. Opposing effects of DNA on proteolysis of a replication initiator. Nucleic Acids Res 2011; 40:1148-59. [PMID: 21976729 PMCID: PMC3273809 DOI: 10.1093/nar/gkr813] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA replication initiation proteins (Reps) are subjected to degradation by cellular proteases. We investigated how the formation of nucleoprotein complex, involving Rep and a protease, affects Rep degradation. All known Escherichia coli AAA+ cytosolic proteases and the replication initiation protein TrfA of the broad-host-range plasmid RK2 were used. Our results revealed that DNA influences the degradation process and that the observed effects are opposite and protease specific. In the case of ClpXP and ClpYQ proteases, DNA abolishes proteolysis, while in the case of ClpAP and Lon proteases it stimulates the process. ClpX and ClpY cannot interact with DNA-bound TrfA, while the ClpAP and Lon activities are enhanced by the formation of nucleoprotein complexes involving both the protease and TrfA. Lon has to interact with TrfA before contacting DNA, or this interaction can occur with TrfA already bound to DNA. The TrfA degradation by Lon can be carried out only on DNA. The absence of Lon results with higher stability of TrfA in the cell.
Collapse
Affiliation(s)
- Slawomir Kubik
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | | | |
Collapse
|
16
|
Sastre DE, Paggi RA, De Castro RE. The Lon protease from the haloalkaliphilic archaeon Natrialba magadii is transcriptionally linked to a cluster of putative membrane proteases and displays DNA-binding activity. Microbiol Res 2010; 166:304-13. [PMID: 20869220 DOI: 10.1016/j.micres.2010.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/08/2010] [Accepted: 07/10/2010] [Indexed: 01/22/2023]
Abstract
The ATP-dependent Lon protease is universally distributed in bacteria, eukaryotic organelles and archaea. In comparison with bacterial and eukaryal Lon proteases, the biology of the archaeal Lon has been studied to a limited extent. In this study, the gene encoding the Lon protease of the alkaliphilic haloarchaeon Natrialba magadii (Nmlon) was cloned and sequenced, and the genetic organization of Nmlon was examined at the transcriptional level. Nmlon encodes a 84 kDa polypeptide with a pI of 4.42 which contains the ATPase, protease and membrane targeting domains of the archaeal-type LonB proteases. Nmlon is part of an operon that encodes membrane proteases and it is transcribed as a polycistronic mRNA in N. magadii cells at different growth stages. Accordingly, NmLon was detected in cell membranes of N. magadii throughout growth by Western blot analysis using specific anti-NmLon antibodies. Interestingly, in electrophoretic mobility shift assays, purified NmLon bound double stranded as well as single stranded DNA in the presence of elevated salt concentrations. This finding shows that DNA-binding is conserved in the LonA and LonB subfamilies and suggests that Lon-DNA interaction may be relevant for its function in haloarchaea.
Collapse
Affiliation(s)
- Diego E Sastre
- Instituto de Investigaciones Biológicas, UNMDP-CONICET, Funes 3250 4 to Nivel, Mar del Plata 7600, Argentina
| | | | | |
Collapse
|