1
|
Silonov SA, Mokin YI, Nedelyaev EM, Smirnov EY, Kuznetsova IM, Turoverov KK, Uversky VN, Fonin AV. On the Prevalence and Roles of Proteins Undergoing Liquid-Liquid Phase Separation in the Biogenesis of PML-Bodies. Biomolecules 2023; 13:1805. [PMID: 38136675 PMCID: PMC10741438 DOI: 10.3390/biom13121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. Among the realm of MLOs, a special place is taken by the promyelocytic leukemia nuclear bodies (PML-NBs or PML bodies), which are the intranuclear compartments involved in the regulation of cellular metabolism, transcription, the maintenance of genome stability, responses to viral infection, apoptosis, and tumor suppression. According to the accepted models, specific interactions, such as SUMO/SIM, the formation of disulfide bonds, etc., play a decisive role in the biogenesis of PML bodies. In this work, a number of bioinformatics approaches were used to study proteins found in the proteome of PML bodies for their tendency for spontaneous liquid-liquid phase separation (LLPS), which is usually caused by weak nonspecific interactions. A total of 205 proteins found in PML bodies have been identified. It has been suggested that UBC9, P53, HIPK2, and SUMO1 can be considered as the scaffold proteins of PML bodies. It was shown that more than half of the proteins in the analyzed proteome are capable of spontaneous LLPS, with 85% of the analyzed proteins being intrinsically disordered proteins (IDPs) and the remaining 15% being proteins with intrinsically disordered protein regions (IDPRs). About 44% of all proteins analyzed in this study contain SUMO binding sites and can potentially be SUMOylated. These data suggest that weak nonspecific interactions play a significantly larger role in the formation and biogenesis of PML bodies than previously expected.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Yakov I. Mokin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene M. Nedelyaev
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene Y. Smirnov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
2
|
Wang C, Teo CR, Sabapathy K. p53-Related Transcription Targets of TAp73 in Cancer Cells-Bona Fide or Distorted Reality? Int J Mol Sci 2020; 21:ijms21041346. [PMID: 32079264 PMCID: PMC7072922 DOI: 10.3390/ijms21041346] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
Identification of p73 as a structural homolog of p53 fueled early studies aimed at determining if it was capable of performing p53-like functions. This led to a conundrum as p73 was discovered to be hardly mutated in cancers, and yet, TAp73, the full-length form, was found capable of performing p53-like functions, including transactivation of many p53 target genes in cancer cell lines. Generation of mice lacking p73/TAp73 revealed a plethora of developmental defects, with very limited spontaneous tumors arising only at a later stage. Concurrently, novel TAp73 target genes involved in cellular growth promotion that are not regulated by p53 were identified, mooting the possibility that TAp73 may have diametrically opposite functions to p53 in tumorigenesis. We have therefore comprehensively evaluated the TAp73 target genes identified and validated in human cancer cell lines, to examine their contextual relevance. Data from focused studies aimed at appraising if p53 targets are also regulated by TAp73—often by TAp73 overexpression in cell lines with non-functional p53—were affirmative. However, genome-wide and phenotype-based studies led to the identification of TAp73-regulated genes involved in cellular survival and thus, tumor promotion. Our analyses therefore suggest that TAp73 may not necessarily be p53’s natural substitute in enforcing tumor suppression. It has likely evolved to perform unique functions in regulating developmental processes and promoting cellular growth through entirely different sets of target genes that are not common to, and cannot be substituted by p53. The p53-related targets initially reported to be regulated by TAp73 may therefore represent an experimental possibility rather than the reality.
Collapse
Affiliation(s)
- Chao Wang
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore;
| | - Cui Rong Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Kanaga Sabapathy
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore;
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore;
- Institute of Molecular and Cell Biology, Biopolis, Singapore 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence:
| |
Collapse
|
3
|
Bertuzzi M, Tang D, Calligaris R, Vlachouli C, Finaurini S, Sanges R, Goldwurm S, Catalan M, Antonutti L, Manganotti P, Pizzolato G, Pezzoli G, Persichetti F, Carninci P, Gustincich S. A human minisatellite hosts an alternative transcription start site for NPRL3 driving its expression in a repeat number-dependent manner. Hum Mutat 2020; 41:807-824. [PMID: 31898848 DOI: 10.1002/humu.23974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 11/16/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
Abstract
Minisatellites, also called variable number of tandem repeats (VNTRs), are a class of repetitive elements that may affect gene expression at multiple levels and have been correlated to disease. Their identification and role as expression quantitative trait loci (eQTL) have been limited by their absence in comparative genomic hybridization and single nucleotide polymorphisms arrays. By taking advantage of cap analysis of gene expression (CAGE), we describe a new example of a minisatellite hosting a transcription start site (TSS) which expression is dependent on the repeat number. It is located in the third intron of the gene nitrogen permease regulator like protein 3 (NPRL3). NPRL3 is a component of the GAP activity toward rags 1 protein complex that inhibits mammalian target of rapamycin complex 1 (mTORC1) activity and it is found mutated in familial focal cortical dysplasia and familial focal epilepsy. CAGE tags represent an alternative TSS identifying TAGNPRL3 messenger RNAs (mRNAs). TAGNPRL3 is expressed in red blood cells both at mRNA and protein levels, it interacts with its protein partner NPRL2 and its overexpression inhibits cell proliferation. This study provides an example of a minisatellite that is both a TSS and an eQTL as well as identifies a new VNTR that may modify mTORC1 activity.
Collapse
Affiliation(s)
| | - Dave Tang
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Raffaella Calligaris
- Area of Neuroscience, SISSA, Trieste, Italy.,Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | | | - Sara Finaurini
- Area of Neuroscience, SISSA, Trieste, Italy.,Department of Health Sciences, Università del Piemonte Orientale and IRCAD, Novara, Italy
| | - Remo Sanges
- Area of Neuroscience, SISSA, Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Mauro Catalan
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Lucia Antonutti
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Gilberto Pizzolato
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Gianni Pezzoli
- Parkinson Institute, ASST G. Pini-CTO, ex ICP, Milan, Italy
| | - Francesca Persichetti
- Department of Health Sciences, Università del Piemonte Orientale and IRCAD, Novara, Italy
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan.,Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Stefano Gustincich
- Area of Neuroscience, SISSA, Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
4
|
Ma Y, Silveri L, LaCava J, Dokudovskaya S. Tumor suppressor NPRL2 induces ROS production and DNA damage response. Sci Rep 2017; 7:15311. [PMID: 29127423 PMCID: PMC5681675 DOI: 10.1038/s41598-017-15497-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
The SEA/GATOR complex is an essential regulator of the mTORC1 pathway. In mammals the GATOR1 complex is composed of the proteins DEPDC5, NPRL2 and NPRL3. GATOR1 serves as an mTORC1 inhibitor and activates the mTORC1-modulating RagA GTPase. However, several GATOR members have mTORC1 independent functions. Here we characterize mammalian cells overexpressing the GATOR1 component NPRL2. We demonstrate that, in the cells with active p53, ectopic expression of NPRL2 induces NOX2-dependent production of reactive oxygen species and DNA damage. Overexpressed NPRL2 accumulates in the nucleus, together with apoptosis-inducing factor (AIF). These events are accompanied by phosphorylation of p53, activation of a DNA-damage response and cell cycle arrest in G1 phase, followed by apoptosis. In the cells negative for active p53, NPRL2 ectopic expression leads to activation of CHK1 or CHK2 kinases and cell cycle arrest in S or G2/M phases. Combined, these results demonstrate a new role for the NPRL2, distinct from its function in mTORC1 regulation.
Collapse
Affiliation(s)
- Yinxing Ma
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Licia Silveri
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA.,Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, 10016, USA
| | - Svetlana Dokudovskaya
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France.
| |
Collapse
|
5
|
Zucchelli S, Fasolo F, Russo R, Cimatti L, Patrucco L, Takahashi H, Jones MH, Santoro C, Sblattero D, Cotella D, Persichetti F, Carninci P, Gustincich S. SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells. Front Cell Neurosci 2015; 9:174. [PMID: 26029048 PMCID: PMC4429562 DOI: 10.3389/fncel.2015.00174] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/20/2015] [Indexed: 12/02/2022] Open
Abstract
Despite recent efforts in discovering novel long non-coding RNAs (lncRNAs) and unveiling their functions in a wide range of biological processes their applications as biotechnological or therapeutic tools are still at their infancy. We have recently shown that AS Uchl1, a natural lncRNA antisense to the Parkinson's disease-associated gene Ubiquitin carboxyl-terminal esterase L1 (Uchl1), is able to increase UchL1 protein synthesis at post-transcriptional level. Its activity requires two RNA elements: an embedded inverted SINEB2 sequence to increase translation and the overlapping region to target its sense mRNA. This functional organization is shared with several mouse lncRNAs antisense to protein coding genes. The potential use of AS Uchl1-derived lncRNAs as enhancers of target mRNA translation remains unexplored. Here we define AS Uchl1 as the representative member of a new functional class of natural and synthetic antisense lncRNAs that activate translation. We named this class of RNAs SINEUPs for their requirement of the inverted SINEB2 sequence to UP-regulate translation in a gene-specific manner. The overlapping region is indicated as the Binding Doman (BD) while the embedded inverted SINEB2 element is the Effector Domain (ED). By swapping BD, synthetic SINEUPs are designed targeting mRNAs of interest. SINEUPs function in an array of cell lines and can be efficiently directed toward N-terminally tagged proteins. Their biological activity is retained in a miniaturized version within the range of small RNAs length. Its modular structure was exploited to successfully design synthetic SINEUPs targeting endogenous Parkinson's disease-associated DJ-1 and proved to be active in different neuronal cell lines. In summary, SINEUPs represent the first scalable tool to increase synthesis of proteins of interest. We propose SINEUPs as reagents for molecular biology experiments, in protein manufacturing as well as in therapy of haploinsufficiencies.
Collapse
Affiliation(s)
- Silvia Zucchelli
- Scuola Internazionale Superiore di Studi Avanzati, Area of Neuroscience Trieste, Italy ; Dipartimento di Scienze della Salute, Universita' del Piemonte Orientale Novara, Italy
| | - Francesca Fasolo
- Scuola Internazionale Superiore di Studi Avanzati, Area of Neuroscience Trieste, Italy
| | - Roberta Russo
- Scuola Internazionale Superiore di Studi Avanzati, Area of Neuroscience Trieste, Italy
| | - Laura Cimatti
- Scuola Internazionale Superiore di Studi Avanzati, Area of Neuroscience Trieste, Italy
| | - Laura Patrucco
- Dipartimento di Scienze della Salute, Universita' del Piemonte Orientale Novara, Italy
| | - Hazuki Takahashi
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | | | - Claudio Santoro
- Dipartimento di Scienze della Salute, Universita' del Piemonte Orientale Novara, Italy
| | - Daniele Sblattero
- Dipartimento di Scienze della Salute, Universita' del Piemonte Orientale Novara, Italy
| | - Diego Cotella
- Dipartimento di Scienze della Salute, Universita' del Piemonte Orientale Novara, Italy
| | - Francesca Persichetti
- Dipartimento di Scienze della Salute, Universita' del Piemonte Orientale Novara, Italy
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies Yokohama, Japan
| | - Stefano Gustincich
- Scuola Internazionale Superiore di Studi Avanzati, Area of Neuroscience Trieste, Italy
| |
Collapse
|
6
|
Dokudovskaya S, Rout MP. SEA you later alli-GATOR--a dynamic regulator of the TORC1 stress response pathway. J Cell Sci 2015; 128:2219-28. [PMID: 25934700 DOI: 10.1242/jcs.168922] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cells constantly adapt to various environmental changes and stresses. The way in which nutrient and stress levels in a cell feed back to control metabolism and growth are, unsurprisingly, extremely complex, as responding with great sensitivity and speed to the 'feast or famine, slack or stress' status of its environment is a central goal for any organism. The highly conserved target of rapamycin complex 1 (TORC1) controls eukaryotic cell growth and response to a variety of signals, including nutrients, hormones and stresses, and plays the key role in the regulation of autophagy. A lot of attention has been paid recently to the factors in this pathway functioning upstream of TORC1. In this Commentary, we focus on a major, newly discovered upstream regulator of TORC1--the multiprotein SEA complex, also known as GATOR. We describe the structural and functional features of the yeast complex and its mammalian homolog, and their involvement in the regulation of the TORC1 pathway and TORC1-independent processes. We will also provide an overview of the consequences of GATOR deregulation in cancer and other diseases.
Collapse
Affiliation(s)
- Svetlana Dokudovskaya
- CNRS UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
7
|
Dmp53 is sequestered to nuclear bodies in spermatogonia of Drosophila melanogaster. Cell Tissue Res 2012; 350:385-94. [PMID: 22961348 DOI: 10.1007/s00441-012-1479-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
Abstract
p53 family members have been implicated in regulation of genomic integrity and apoptosis in a variety of tissues. The Drosophila family member, Dmp53, primarily functions to regulate apoptosis in developing and regenerating tissues but loss of function mutants are viable and fertile. Dmp53 exhibits a striking expression pattern in the male germline with high levels found in nuclear bodies in pre-meiotic germ cells. The localisation of Dmp53 to nuclear bodies is dependent upon Dmp53 complexes being able to bind DNA, and although dmp53 mutants do not affect germline stem cell (GSC) maintenance or differentiation, GSCs are sensitive to overexpression of Dmp53 but maturing spermatogonia are not. Dmp53 thus has differential effects depending upon the stage of male germline maturation.
Collapse
|
8
|
Kowalczyk MS, Hughes JR, Babbs C, Sanchez-Pulido L, Szumska D, Sharpe JA, Sloane-Stanley JA, Morriss-Kay GM, Smoot LB, Roberts AE, Watkins H, Bhattacharya S, Gibbons RJ, Ponting CP, Wood WG, Higgs DR. Nprl3 is required for normal development of the cardiovascular system. Mamm Genome 2012; 23:404-15. [PMID: 22538705 DOI: 10.1007/s00335-012-9398-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/19/2012] [Indexed: 12/18/2022]
Abstract
C16orf35 is a conserved and widely expressed gene lying adjacent to the human α-globin cluster in all vertebrate species. In-depth sequence analysis shows that C16orf35 (now called NPRL3) is an orthologue of the yeast gene Npr3 (nitrogen permease regulator 3) and, furthermore, is a paralogue of its protein partner Npr2. The yeast Npr2/3 dimeric protein complex senses amino acid starvation and appropriately adjusts cell metabolism via the TOR pathway. Here we have analysed a mouse model in which expression of Nprl3 has been abolished using homologous recombination. The predominant effect on RNA expression appears to involve genes that regulate protein synthesis and cell cycle, consistent with perturbation of the mTOR pathway. Embryos homozygous for this mutation die towards the end of gestation with a range of cardiovascular defects, including outflow tract abnormalities and ventriculoseptal defects consistent with previous observations, showing that perturbation of the mTOR pathway may affect development of the myocardium. NPRL3 is a candidate gene for harbouring mutations in individuals with developmental abnormalities of the cardiovascular system.
Collapse
Affiliation(s)
- Monika S Kowalczyk
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kowalczyk MS, Hughes JR, Garrick D, Lynch MD, Sharpe JA, Sloane-Stanley JA, McGowan SJ, De Gobbi M, Hosseini M, Vernimmen D, Brown JM, Gray NE, Collavin L, Gibbons RJ, Flint J, Taylor S, Buckle VJ, Milne TA, Wood WG, Higgs DR. Intragenic enhancers act as alternative promoters. Mol Cell 2012; 45:447-58. [PMID: 22264824 DOI: 10.1016/j.molcel.2011.12.021] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 10/14/2011] [Accepted: 12/06/2011] [Indexed: 11/25/2022]
Abstract
A substantial amount of organismal complexity is thought to be encoded by enhancers which specify the location, timing, and levels of gene expression. In mammals there are more enhancers than promoters which are distributed both between and within genes. Here we show that activated, intragenic enhancers frequently act as alternative tissue-specific promoters producing a class of abundant, spliced, multiexonic poly(A)(+) RNAs (meRNAs) which reflect the host gene's structure. meRNAs make a substantial and unanticipated contribution to the complexity of the transcriptome, appearing as alternative isoforms of the host gene. The low protein-coding potential of meRNAs suggests that many meRNAs may be byproducts of enhancer activation or underlie as-yet-unidentified RNA-encoded functions. Distinguishing between meRNAs and mRNAs will transform our interpretation of dynamic changes in transcription both at the level of individual genes and of the genome as a whole.
Collapse
Affiliation(s)
- Monika S Kowalczyk
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|