1
|
Li Z, Zeng S, Du Q, Li X, Chen Q, Zhang S, Zhou X, Li H, Jiang A, Wang X, Shang P, Li M, Long K. The repression of the lipolytic inhibitor G0s2 enhancers affects lipid metabolism. Gene 2025; 938:149162. [PMID: 39667714 DOI: 10.1016/j.gene.2024.149162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The G0/G1 switch gene 2 (G0s2) is a selective inhibitor of adipose triglyceride lipase (ATGL) which is the rate-limiting enzyme for triglycerides (TGs) hydrolysis in adipocytes, and regulates the mobilization of TGs in adipocytes and hepatocytes. The expression and functional disorders of G0S2 are associated with various metabolic diseases and related pathological states, such as obesity and metabolic syndrome and non-alcoholic fatty liver disease (NAFLD). However, the extent to which the transcriptional regulatory mechanisms mediated by the interaction between the G0s2 gene promoter and enhancer regions are involved remains unknown. Here, through the analysis of epigenomic data (H3K27ac, H3K4me1, and DHS-seq) and luciferase reporter assays, we identified three active enhancers of G0s2 in 3 T3-L1 adipocytes. Subsequently, using the dCas9-KRAB system for epigenetic inhibition of G0S2-En2, -En4, and -En5 revealed the functional role of these enhancers in regulating G0s2 expression and lipid droplet biosynthesis. Additionally, transcriptome analyses revealed that inhibition of G0S2-En5 downregulated pathways associated with lipid metabolism and lipid biosynthesis. Furthermore, overexpression of transcription factors (TFs) and motif mutation experiments identified that PPARG and RXRA regulate the activity of G0S2-En5. Taken together, we identified functional enhancers regulating G0s2 expression and elucidated the important role of the G0S2-En5 in lipid droplet biogenesis.
Collapse
Affiliation(s)
- Ziqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Sha Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinjiao Du
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaokai Li
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Qiuyue Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Songling Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Haohuan Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Anan Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Shang
- Animal Science College, Tibet Agriculture and Animal Husbandry University, Linzhi, 860000, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu 611130, China; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Chongqing Academy of Animal Sciences, Chongqing 402460, China; National Center of Technology Innovation for Pigs, Chongqing 402460, China.
| |
Collapse
|
2
|
Shen XH, Xiong SP, Wang SP, Lu S, Wan YY, Zhang HQ. Mutation on JmjC domain of UTX impaired its antitumor effects in pancreatic cancer via inhibiting G0S2 expression and activating the Toll-like signaling pathway. Mol Med 2024; 30:258. [PMID: 39707168 DOI: 10.1186/s10020-024-01023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Recently, the incidence of pancreatic cancer (PC) has gradually increased. Research has shown that UTX mutants are critical in tumors. However, the underlying mechanisms remain incompletely understood. This study aimed to explore how UTX mutation would affect its related function in PC. METHOD Exome sequencing was used to analyze PC samples. MTT, transwell, and colony formation assays were performed to determine the cellular functions of PC cells. qRT-PCR, Western Blot, TUNEL, immunohistochemistry, CHIP, bioinformatics, and xenograft experiments were used to investigate the mechanism of UTX mutants in PC in vitro and in vivo. RESULTS We compared exome sequencing data from 12 PC samples and found a UTX missense mutation on the JmjC structure. Through cellular functions and xenograft experiments, wild-type UTX was found to significantly inhibit PC malignant progression in vitro and in vivo, while UTX mutation notably impaired this effect. Furthermore, G0S2 was identified as the key target gene for UTX, and wild-type UTX significantly increased its expression, while mutant one lost this function to a certain extent both in vitro and in vivo. More importantly, G0S2 overexpression not only inhibited tumor malignant phenotype and drug resistance for Gemcitabine in PC but also effectively reversed the roles of UTX mutant with Toll-like signaling pathway involved. In terms of mechanism, UTX mutation elevated the H3K27me3 modification level of the G0S2 promoter, which decreased its expression in PC cells. CONCLUSION In conclusion, UTX mutant weakened the antitumor effect of wild-type UTX in PC by inhibiting G0S2 expression and activating the Toll-like signaling pathway.
Collapse
Affiliation(s)
- Xiao-Hua Shen
- Department of Gastrointestinal Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Shu-Ping Xiong
- The Second Department of Radiotherapy, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Sheng-Peng Wang
- The Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shan Lu
- Department of Gastrointestinal Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Yi-Ye Wan
- Department of Gastrointestinal Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China
| | - Hui-Qing Zhang
- Department of Gastrointestinal Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, People's Republic of China.
- JXHC Key Laboratory of Tumor Microenvironment and Immunoregulation (Jiangxi Cancer Hospital), Nanchang, Jiangxi, 330029, People's Republic of China.
| |
Collapse
|
3
|
Corbet AK, Bikorimana E, Boyd RI, Shokry D, Kries K, Gupta A, Paton A, Sun Z, Fazal Z, Freemantle SJ, Nelson ER, Spinella MJ, Singh R. G0S2 promotes antiestrogenic and pro-migratory responses in ER+ and ER- breast cancer cells. Transl Oncol 2023; 33:101676. [PMID: 37086619 DOI: 10.1016/j.tranon.2023.101676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
G0/G1 switch gene 2 (G0S2) is known to inhibit lipolysis by inhibiting adipose triglyceride lipase (ATGL). In this report, we dissect the role of G0S2 in ER+ versus ER- breast cancer. Overexpression of G0S2 in ER- cells increased cell proliferation, while G0S2 overexpression in ER+ cells decreased cell proliferation. Transcriptome analysis revealed that G0S2 mediated distinct but overlapping transcriptional responses in ER- and ER+ cells. G0S2 reduced genes associated with an epithelial phenotype, especially in ER- cells, including CDH1, ELF3, STEAP4 and TACSTD2, suggesting promotion of the epithelial-mesenchymal transition (EMT). G0S2 also repressed estrogen signaling and estrogen receptor target gene signatures, especially in ER+ cells, including TFF1 and TFF3. In addition, G0S2 overexpression increased cell migration in ER- cells and increased estrogen deprivation sensitivity in ER+ cells. Interestingly, two genes downstream of ATGL in fat utilization and very important in steroid hormone biosynthesis, HMGCS1 and HMGCS2, were downregulated in G0S2 overexpressing ER+ cells. In addition, HSD17B11, a gene that converts estradiol to its less estrogenic derivative, estrone, was highly upregulated in G0S2 overexpressing ER+ cells, suggesting G0S2 overexpression has a negative effect on estradiol production and maintenance. High expression of G0S2 and HSD17B11 was associated with improved relapse-free survival in breast cancer patients while high expression of HMGSC1 was associated with poor survival. Finally, we deleted G0S2 in breast cancer-prone MMTV-PyMT mice. Our data indicates a complex role for G0S2 in breast cancer, dependent on ER status, that may be partially mediated by suppression of the estrogen signaling pathway.
Collapse
Affiliation(s)
- Andrea K Corbet
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Emmanuel Bikorimana
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Raya I Boyd
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Doha Shokry
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kelly Kries
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ayush Gupta
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anneliese Paton
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhengyang Sun
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sarah J Freemantle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana IL 61801, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Carle Illinois College of Medicine University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana IL 61801, USA.
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Gonzalez MA, Olivas IM, Bencomo‐Alvarez AE, Rubio AJ, Barreto‐Vargas C, Lopez JL, Dang SK, Solecki JP, McCall E, Astudillo G, Velazquez VV, Schenkel K, Reffell K, Perkins M, Nguyen N, Apaflo JN, Alvidrez E, Young JE, Lara JJ, Yan D, Senina A, Ahmann J, Varley KE, Mason CC, Eide CA, Druker BJ, Nurunnabi M, Padilla O, Bajpeyi S, Eiring AM. Loss of G0/G1 switch gene 2 (G0S2) promotes disease progression and drug resistance in chronic myeloid leukaemia (CML) by disrupting glycerophospholipid metabolism. Clin Transl Med 2022; 12:e1146. [PMID: 36536477 PMCID: PMC9763536 DOI: 10.1002/ctm2.1146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) targeting BCR::ABL1 have turned chronic myeloid leukaemia (CML) from a fatal disease into a manageable condition for most patients. Despite improved survival, targeting drug-resistant leukaemia stem cells (LSCs) remains a challenge for curative CML therapy. Aberrant lipid metabolism can have a large impact on membrane dynamics, cell survival and therapeutic responses in cancer. While ceramide and sphingolipid levels were previously correlated with TKI response in CML, the role of lipid metabolism in TKI resistance is not well understood. We have identified downregulation of a critical regulator of lipid metabolism, G0/G1 switch gene 2 (G0S2), in multiple scenarios of TKI resistance, including (1) BCR::ABL1 kinase-independent TKI resistance, (2) progression of CML from the chronic to the blast phase of the disease, and (3) in CML versus normal myeloid progenitors. Accordingly, CML patients with low G0S2 expression levels had a worse overall survival. G0S2 downregulation in CML was not a result of promoter hypermethylation or BCR::ABL1 kinase activity, but was rather due to transcriptional repression by MYC. Using CML cell lines, patient samples and G0s2 knockout (G0s2-/- ) mice, we demonstrate a tumour suppressor role for G0S2 in CML and TKI resistance. Our data suggest that reduced G0S2 protein expression in CML disrupts glycerophospholipid metabolism, correlating with a block of differentiation that renders CML cells resistant to therapy. Altogether, our data unravel a new role for G0S2 in regulating myeloid differentiation and TKI response in CML, and suggest that restoring G0S2 may have clinical utility.
Collapse
Affiliation(s)
- Mayra A. Gonzalez
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Idaly M. Olivas
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Alfonso E. Bencomo‐Alvarez
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Andres J. Rubio
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | | | - Jose L. Lopez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Sara K. Dang
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Jonathan P. Solecki
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Emily McCall
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Gonzalo Astudillo
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Vanessa V. Velazquez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Katherine Schenkel
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Kelaiah Reffell
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Mariah Perkins
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Nhu Nguyen
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Jehu N. Apaflo
- Metabolic, Nutrition and Exercise Research (MiNER) Laboratory, Department of KinesiologyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Efren Alvidrez
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - James E. Young
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Joshua J. Lara
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Dongqing Yan
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Anna Senina
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Jonathan Ahmann
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | | | - Clinton C. Mason
- Huntsman Cancer InstituteThe University of UtahSalt Lake CityUtahUSA
| | - Christopher A. Eide
- Knight Cancer InstituteDivision of Hematology/Medical OncologyOregon Health & Science UniversityPortlandOregonUSA
| | - Brian J. Druker
- Knight Cancer InstituteDivision of Hematology/Medical OncologyOregon Health & Science UniversityPortlandOregonUSA
| | - Md Nurunnabi
- Department of Pharmaceutical SciencesSchool of PharmacyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Osvaldo Padilla
- Department of PathologyTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| | - Sudip Bajpeyi
- Metabolic, Nutrition and Exercise Research (MiNER) Laboratory, Department of KinesiologyUniversity of Texas at El PasoEl PasoTexasUSA
| | - Anna M. Eiring
- Department of Molecular and Translational MedicineCenter of Emphasis in CancerTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- L. Frederick Francis Graduate School of Biomedical SciencesTexas Tech University Health Sciences Center El PasoEl PasoTexasUSA
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl PasoTexasUSA
| |
Collapse
|
5
|
Methyl-CpG-binding domain protein 2 contributes to renal fibrosis through promoting polarized M1 macrophages. Cell Death Dis 2022; 13:125. [PMID: 35136032 PMCID: PMC8826408 DOI: 10.1038/s41419-022-04577-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022]
Abstract
Recent studies reported that Methyl-CpG–binding domain protein 2 (MBD2) promoted M2 macrophages accumulation to increase bleomycin-induced pulmonary fibrosis. However, the role and mechanism of action of MBD2 in macrophages differentiation and renal fibrosis remain largely unknown. In the current study, MBD2 not only promoted the differentiation of resting M0 macrophages to polarized M2 macrophages, but also induced them to polarized M1 macrophages and the transition of M2 to M1 macrophages. ChIP analysis demonstrated that MBD2 physically interacted with the promoter region of the CpG islands of G0S2 genes, and then activated their expression by inducing hypomethylation of the promoter region. Interestingly, the data demonstrated that the role of G0S2 in macrophages differentiation is consistent with MBD2. Furthermore, Co-culture of activated M1 macrophages and murine embryonic NIH 3T3 fibroblasts indicated that MBD2 mediated the M1-induction of ECM production by embryonic NIH 3T3 fibroblasts via promotion of G0S2. In addition, we also found that inhibition of MBD2 suppressed LPS induced the expression of p53 as well as activation and expression of stat3 in RAW264.7 macrophages. In vivo, MBD2 LysMcre attenuated unilateral ureteral obstruction (UUO) and ischemia/reperfusion (I/R)-induced renal fibrosis via downregulation of G0S2, which was demonstrated by the downregulation of fibronectin (FN), collagen I and IV, α-SMA, G0S2. These data collectively demonstrated that MBD2 in macrophages contributed to UUO and I/R-induced renal fibrosis through the upregulation of G0S2, which could be a target for treatment for chronic kidney disease.
Collapse
|
6
|
Elevated ATGL in colon cancer cells and cancer stem cells promotes metabolic and tumorigenic reprogramming reinforced by obesity. Oncogenesis 2021; 10:82. [PMID: 34845203 PMCID: PMC8630180 DOI: 10.1038/s41389-021-00373-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Obesity is a worldwide epidemic associated with increased risk and progression of colon cancer. Here, we aimed to determine the role of adipose triglyceride lipase (ATGL), responsible for intracellular lipid droplet (LD) utilization, in obesity-driven colonic tumorigenesis. In local colon cancer patients, significantly increased ATGL levels in tumor tissue, compared to controls, were augmented in obese individuals. Elevated ATGL levels in human colon cancer cells (CCC) relative to non-transformed were augmented by an obesity mediator, oleic acid (OA). In CCC and colonospheres, enriched in colon cancer stem cells (CCSC), inhibition of ATGL prevented LDs utilization and inhibited OA-stimulated growth through retinoblastoma-mediated cell cycle arrest. Further, transcriptomic analysis of CCC, with inhibited ATGL, revealed targeted pathways driving tumorigenesis, and high-fat-diet obesity facilitated tumorigenic pathways. Inhibition of ATGL in colonospheres revealed targeted pathways in human colonic tumor crypt base cells (enriched in CCSC) derived from colon cancer patients. In CCC and colonospheres, we validated selected transcripts targeted by ATGL inhibition, some with emerging roles in colonic tumorigeneses (ATG2B, PCK2, PGAM1, SPTLC2, IGFBP1, and ABCC3) and others with established roles (MYC and MUC2). These findings demonstrate obesity-promoted, ATGL-mediated colonic tumorigenesis and establish the therapeutic significance of ATGL in obesity-reinforced colon cancer progression.
Collapse
|
7
|
Leal-Gutiérrez JD, Elzo MA, Carr C, Mateescu RG. RNA-seq analysis identifies cytoskeletal structural genes and pathways for meat quality in beef. PLoS One 2020; 15:e0240895. [PMID: 33175867 PMCID: PMC7657496 DOI: 10.1371/journal.pone.0240895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/05/2020] [Indexed: 01/03/2023] Open
Abstract
RNA sequencing (RNA-seq) has allowed for transcriptional profiling of biological systems through the identification of differentially expressed (DE) genes and pathways. A total of 80 steers with extreme phenotypes were selected from the University of Florida multibreed Angus-Brahman herd. The average slaughter age was 12.91±8.69 months. Tenderness, juiciness and connective tissue assessed by sensory panel, along with marbling, Warner-Bratzler Shear Force (WBSF) and cooking loss, were measured in longissimus dorsi muscle. Total RNA was extracted from muscle and one RNA-seq library per sample was constructed, multiplexed, and sequenced based on protocols by Illumina HiSeq-3000 platform to generate 2×101 bp paired-end reads. The overall read mapping rate using the Btau_4.6.1 reference genome was 63%. A total of 8,799 genes were analyzed using two different methodologies, an expression association and a DE analysis. A gene and exon expression association analysis was carried out using a meat quality index on all 80 samples as a continuous response variable. The expression of 208 genes and 3,280 exons from 1,565 genes was associated with the meat quality index (p-value ≤ 0.05). A gene and isoform DE evaluation was performed analyzing two groups with extreme WBSF, tenderness and marbling. A total of 676 (adjusted p-value≤0.05), 70 (adjusted p-value≤0.1) and 198 (adjusted p-value≤0.1) genes were DE for WBSF, tenderness and marbling, respectively. A total of 106 isoforms from 98 genes for WBSF, 13 isoforms from 13 genes for tenderness and 43 isoforms from 42 genes for marbling (FDR≤0.1) were DE. Cytoskeletal and transmembrane anchoring genes and pathways were identified in the expression association, DE and the gene enrichment analyses; these proteins can have a direct effect on meat quality. Cytoskeletal proteins and transmembrane anchoring molecules can influence meat quality by allowing cytoskeletal interaction with myocyte and organelle membranes, contributing to cytoskeletal structure and architecture maintenance postmortem.
Collapse
Affiliation(s)
- Joel D. Leal-Gutiérrez
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Chad Carr
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
8
|
Páez-Pérez E, Llamas-García ML, Benítez-Cardoza CG, Montero-Morán GM, Lara-González S. Bioinformatic Analysis and Biophysical Characterization Reveal Structural Disorder in G0S2 Protein. ACS OMEGA 2020; 5:25841-25847. [PMID: 33073109 PMCID: PMC7557935 DOI: 10.1021/acsomega.0c03171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
G0S2 is a small protein of 103 residues in length that is involved in multiple cellular processes. To date, several reports have shown that G0S2 functions by making direct protein-protein interactions with key proteins. In lipolysis, G0S2 specifically interacts with adipose triglyceride lipase, inhibiting its activity and resulting in lipolysis being downregulated. In a similar way, G0S2 also participates in the regulation of apoptosis, cell proliferation, and oxidative phosphorylation; however, information regarding G0S2 structural and biophysical properties is limited. In this work, we conducted a comparative structural analysis of human and mouse G0S2 proteins. Bioinformatics suggests the presence of a disordered C-terminal region in human G0S2. Experimental characterization by size-exclusion chromatography and dynamic light scattering showed that human and mouse G0S2 have different hydrodynamic properties. In comparison to the mouse G0S2, which behaves similar to a globular protein, the human G0S2 shows an elongated conformation, most likely by displaying a disordered C-terminal region. Further analysis of hydrodynamic properties under denaturing conditions suggests the presence of a structural element in the mouse protein that undergoes an order to disorder transition at low urea concentration. Structural analysis by circular dichroism revealed that in native conditions, both proteins are mainly unstructured, showing the presence of beta sheet structures. Further analysis of CD data suggests that both proteins belong to the premolten globule family of intrinsically disordered proteins. We suggest that the intrinsic disorder observed in the G0S2 protein may facilitate its interaction with multiple partners in the regulation of cellular metabolism.
Collapse
Affiliation(s)
- Edgar
D. Páez-Pérez
- IPICYT,
División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica
A. C., San Luis Potosí 78216, México
| | - Miriam Livier Llamas-García
- IPICYT,
División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica
A. C., San Luis Potosí 78216, México
| | - Claudia G. Benítez-Cardoza
- Laboratorio
de Investigación Bioquímica, Programa Institucional
en Biomedicina Molecular ENMyH-Instituto Politécnico Nacional, Ciudad de México 07320, México
| | - Gabriela M. Montero-Morán
- Facultad
de Ciencias Químicas, Laboratorio IBCM, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, México
| | - Samuel Lara-González
- IPICYT,
División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica
A. C., San Luis Potosí 78216, México
| |
Collapse
|
9
|
Lipolytic inhibitor G0S2 modulates glioma stem-like cell radiation response. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:147. [PMID: 30953555 PMCID: PMC6451284 DOI: 10.1186/s13046-019-1151-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ionizing radiation (IR) therapy is the standard first-line treatment for newly diagnosed patients with glioblastoma (GBM), the most common and malignant primary brain tumor. However, the effects of IR are limited due to the aberrant radioresistance of GBM. METHODS Transcriptome analysis was performed using RNA-seq in radioresistant patient-derived glioma stem-like cells (GSCs). Survival of glioma patient and mice bearing-brain tumors was analyzed by Kaplan-Meier survival analysis. Lipid droplet and γ-H2AX foci-positive cells were evaluated using immunofluorescence staining. RESULTS Lipolytic inhibitor G0/G1 switch gene 2 (G0S2) is upregulated in radioresistant GSCs and elevated in clinical GBM. GBM patients with high G0S2 expression had significantly shorter overall survival compared with those with low expression of G0S2. Using genetic approaches targeting G0S2 in glioma cells and GSCs, we found that knockdown of G0S2 promoted lipid droplet turnover, inhibited GSC radioresistance, and extended survival of xenograft tumor mice with or without IR. In contrast, overexpression of G0S2 promoted glioma cell radiation resistance. Mechanistically, high expression of G0S2 reduced lipid droplet turnover and thereby attenuated E3 ligase RNF168-mediated 53BP1 ubiquitination through activated the mechanistic target of rapamycin (mTOR)-ribosomal S6 kinase (S6K) signaling and increased 53BP1 protein stability in response to IR, leading to enhanced DNA repair and glioma radioresistance. CONCLUSIONS Our findings uncover a new function for lipolytic inhibitor G0S2 as an important regulator for GSC radioresistance, suggesting G0S2 as a potential therapeutic target for treating gliomas.
Collapse
|
10
|
Sugaya Y, Satoh H. Liver-specific G 0 /G 1 switch gene 2 (G0s2) expression promotes hepatic insulin resistance by exacerbating hepatic steatosis in male Wistar rats. J Diabetes 2017; 9:754-763. [PMID: 27624922 DOI: 10.1111/1753-0407.12482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/18/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hepatic steatosis is strongly associated with insulin resistance. It has been reported that G0 /G1 switch gene 2 (G0s2) inhibits the lipolytic activity of adipose triglyceride lipase, which is a major lipase in the liver as well as in adipocytes. Moreover, G0s2 protein content is increased in the livers of high-fat diet (HFD)-fed rats. In the present study, we investigated the effect of hepatic G0s2 on insulin sensitivity in male Wistar rats. METHODS Male Wistar rats were fed a 60% HFD for 4 weeks. After 3 weeks of feeding, rats were injected with adenovirus-expressing green fluorescent protein (Ad-GFP; control) or adenovirus-expressing mouse G0s2 (Ad-G0s2). On Day 7 after injection, a euglycemic-hyperinsulinemic clamp study was performed in rats fasted for 8 h. RESULTS Body weight and fasting glucose levels were not significantly different between the Ad-GFP and Ad-G0s2 groups. During the clamp study, the glucose infusion rate required for euglycemia decreased significantly by 16% in the Ad-G0s2 compared with Ad-GFP group. The insulin-suppressed hepatic glucose output increased significantly in the Ad-G0s2 group, but the insulin-stimulated glucose disposal rate was not significantly different between the two groups. Consistent with the clamp data, insulin-stimulated phosphorylation of Akt decreased significantly in livers of rats injected with Ad-G0s2. Furthermore, Oil Red O-staining indicated that overexpression of G0s2 protein in the liver promoted hepatic steatosis by 2.5-fold in HFD-fed rats. CONCLUSION The results of the present study indicate that hepatic G0s2 protein may promote hepatic insulin resistance by exacerbating hepatic steatosis.
Collapse
Affiliation(s)
- Yoshiyuki Sugaya
- Department of Nephrology, Hypertension, Diabetology, Endocrinology, and Metabolism, Fukushima Medical University, Fukushima, Japan
| | - Hiroaki Satoh
- Department of Nephrology, Hypertension, Diabetology, Endocrinology, and Metabolism, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
11
|
Zagani R, El-Assaad W, Gamache I, Teodoro JG. Inhibition of adipose triglyceride lipase (ATGL) by the putative tumor suppressor G0S2 or a small molecule inhibitor attenuates the growth of cancer cells. Oncotarget 2016; 6:28282-95. [PMID: 26318046 PMCID: PMC4695060 DOI: 10.18632/oncotarget.5061] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/03/2015] [Indexed: 11/25/2022] Open
Abstract
The G0/G1 switch gene 2 (G0S2) is methylated and silenced in a wide range of human cancers. The protein encoded by G0S2 is an endogenous inhibitor of lipid catabolism that directly binds adipose triglyceride lipase (ATGL). ATGL is the rate-limiting step in triglyceride metabolism. Although the G0S2 gene is silenced in cancer, the impact of ATGL in the growth and survival of cancer cells has never been addressed. Here we show that ectopic expression of G0S2 in non-small cell lung carcinomas (NSCL) inhibits triglyceride catabolism and results in lower cell growth. Similarly, knockdown of ATGL increased triglyceride levels, attenuated cell growth and promoted apoptosis. Conversely, knockdown of endogenous G0S2 enhanced the growth and invasiveness of cancer cells. G0S2 is strongly induced in acute promyelocytic leukemia (APL) cells in response to all trans retinoic acid (ATRA) and we show that inhibition of ATGL in these cells by G0S2 is required for efficacy of ATRA treatment. Our data uncover a novel tumor suppressor mechanism by which G0S2 directly inhibits activity of a key intracellular lipase. Our results suggest that elevated ATGL activity may be a general property of many cancer types and potentially represents a novel target for chemotherapy.
Collapse
Affiliation(s)
- Rachid Zagani
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Wissal El-Assaad
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Isabelle Gamache
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Jose G Teodoro
- Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada.,Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
12
|
Yim CY, Sekula DJ, Hever-Jardine MP, Liu X, Warzecha JM, Tam J, Freemantle SJ, Dmitrovsky E, Spinella MJ. G0S2 Suppresses Oncogenic Transformation by Repressing a MYC-Regulated Transcriptional Program. Cancer Res 2016; 76:1204-13. [PMID: 26837760 DOI: 10.1158/0008-5472.can-15-2265] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/08/2015] [Indexed: 01/31/2023]
Abstract
Methylation-mediated silencing of G0-G1 switch gene 2 (G0S2) has been detected in a variety of solid tumors, whereas G0S2 induction is associated with remissions in patients with acute promyelocytic leukemia, implying that G0S2 may possess tumor suppressor activity. In this study, we clearly demonstrate that G0S2 opposes oncogene-induced transformation using G0s2-null immortalized mouse embryonic fibroblasts (MEF). G0s2-null MEFs were readily transformed with HRAS or EGFR treatment compared with wild-type MEFs. Importantly, restoration of G0S2 reversed HRAS-driven transformation. G0S2 is known to regulate fat metabolism by attenuating adipose triglyceride lipase (ATGL), but repression of oncogene-induced transformation by G0S2 was independent of ATGL inhibition. Gene expression analysis revealed an upregulation of gene signatures associated with transformation, proliferation, and MYC targets in G0s2-null MEFs. RNAi-mediated ablation and pharmacologic inhibition of MYC abrogated oncogene-induced transformation of G0s2-null MEFs. Furthermore, we found that G0S2 was highly expressed in normal breast tissues compared with malignant tissue. Intriguingly, high levels of G0S2 were also associated with a decrease in breast cancer recurrence rates, especially in estrogen receptor-positive subtypes, and overexpression of G0S2 repressed the proliferation of breast cancer cells in vitro. Taken together, these findings indicate that G0S2 functions as a tumor suppressor in part by opposing MYC activity, prompting further investigation of the mechanisms by which G0S2 silencing mediates MYC-induced oncogenesis in other malignancies.
Collapse
Affiliation(s)
- Christina Y Yim
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - David J Sekula
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary P Hever-Jardine
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Xi Liu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joshua M Warzecha
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Janice Tam
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Sarah J Freemantle
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Ethan Dmitrovsky
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J Spinella
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
| |
Collapse
|
13
|
Deletion of the putative tumor suppressor gene, G0s2, does not affect progression of Eμ-Myc driven lymphomas in mice. Leuk Res 2015; 40:100-2. [PMID: 26654706 DOI: 10.1016/j.leukres.2015.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023]
Abstract
Several recent reports have suggested that the G0/G1 switch gene 2 (G0S2) is a potential tumor suppressor in leukemia. Here we show that deletion of the G0s2 gene in mouse does not affect the latency of cancer progression in the Eμ-Myc model of lymphoma. Our findings do not rule out the possibility that G0S2 may be playing a role in other forms of leukemia, but clearly show that the commonly used Eμ-Myc transgenic is not the correct model to conduct studies on G0s2.
Collapse
|
14
|
Watanabe K, Amano Y, Ishikawa R, Sunohara M, Kage H, Ichinose J, Sano A, Nakajima J, Fukayama M, Yatomi Y, Nagase T, Ohishi N, Takai D. Histone methylation-mediated silencing of miR-139 enhances invasion of non-small-cell lung cancer. Cancer Med 2015; 4:1573-82. [PMID: 26256448 PMCID: PMC4618627 DOI: 10.1002/cam4.505] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 12/27/2022] Open
Abstract
MicroRNA expression is frequently altered in human cancers, and some microRNAs act as oncogenes or tumor suppressors. MiR-139-5p (denoted thereafter as miR-139) has recently been reported to function as a tumor suppressor in several types of human cancer (hepatocellular carcinoma, colorectal cancer, breast cancer, and gastric cancer), but its function in non-small-cell lung cancer (NSCLC) and the mechanism of its suppression have not been studied in detail. MiR-139 was suppressed frequently in primary NSCLCs. MiR-139 is located within the intron of PDE2A and its expression was significantly correlated with the expression of PDE2A. A chromatin immunoprecipitation assay revealed that miR-139 was epigenetically silenced by histone H3 lysine 27 trimethylation (H3K27me3) of its host gene PDE2A and this process was independent of promoter DNA methylation. Pharmacological inhibition of both histone methylation and deacetylation-induced miR-139 with its host gene PDE2A. Ectopic expression of miR-139 in lung cancer cell lines did not affect the proliferation nor the migration but significantly suppressed the invasion through the extracellular matrix. In primary NSCLCs, decreased expression of miR-139 was significantly associated with distant lymph node metastasis and histological invasiveness (lymphatic invasion and vascular invasion) on both univariate and multivariate analyses. Collectively, these results suggest that H3K27me3-mediated silencing of miR-139 enhances an invasive and metastatic phenotype of NSCLC.
Collapse
Affiliation(s)
- Kousuke Watanabe
- Department of Respiratory Medicine, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yosuke Amano
- Department of Respiratory Medicine, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Rie Ishikawa
- Department of Respiratory Medicine, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Mitsuhiro Sunohara
- Department of Respiratory Medicine, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hidenori Kage
- Department of Respiratory Medicine, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Junji Ichinose
- Department of Cardiothoracic Surgery, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Sano
- Department of Cardiothoracic Surgery, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Jun Nakajima
- Department of Cardiothoracic Surgery, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Nobuya Ohishi
- Department of Respiratory Medicine, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Daiya Takai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
15
|
Lee PH, Yamada T, Park CS, Shen Y, Puppi M, Lacorazza HD. G0S2 modulates homeostatic proliferation of naïve CD8⁺ T cells and inhibits oxidative phosphorylation in mitochondria. Immunol Cell Biol 2015; 93:605-15. [PMID: 25666096 PMCID: PMC4531109 DOI: 10.1038/icb.2015.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 12/24/2014] [Accepted: 01/15/2015] [Indexed: 11/16/2022]
Abstract
Since its discovery, diverse functions have been attributed to the G0/G1 switch gene 2 (G0S2), from lipid metabolism to control of cell proliferation. Our group showed for the first time that G0S2 promotes quiescence in hematopoietic stem cells by interacting with and retaining nucleolin around the nucleus. Herein, we report the role of G0S2 in the differentiation and function of CD8+ T cells examined in mice with an embryonic deletion of the G0s2 gene. G0S2 expression in naïve CD8+ T cells decreased immediately after T-cell receptor activation downstream of the MAPK, calcium/calmodulin, PI3K, and mTOR pathways. Surprisingly, G0S2-null naïve CD8+ T cells displayed increased basal and spare respiratory capacity that was not associated with increased mitochondrial biogenesis but with increased phosphorylation of AMPKα. Naïve CD8+ T cells showed increased proliferation in response to in vitro activation and in vivo lymphopenia; however, naïve CD8+ T cells expressing the OT-1 transgene exhibited normal differentiation of naïve cells to effector and memory CD8+ T cells upon infection with Listeria monocytogenes in a wild type or a G0s2-null environment, with increased circulating levels of free fatty acids. Collectively, our results suggest that G0S2 inhibits energy production by oxidative phosphorylation to fine-tune proliferation in homeostatic conditions.
Collapse
Affiliation(s)
- Ping-Hsien Lee
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Takeshi Yamada
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Chun Shik Park
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Ye Shen
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Monica Puppi
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - H Daniel Lacorazza
- 1] Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA [2] Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
16
|
Wang Y, Zhang Y, Zhu Y, Zhang P. Lipolytic inhibitor G0/G1 switch gene 2 inhibits reactive oxygen species production and apoptosis in endothelial cells. Am J Physiol Cell Physiol 2015; 308:C496-504. [PMID: 25588877 DOI: 10.1152/ajpcell.00317.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G0/G1 switch gene 2 (G0S2), a novel target gene of peroxisome proliferator-activated receptor, is highly expressed in fat tissues. G0S2 acts as proapoptotic factor toward human cancer cells. Endothelial cell (EC) apoptosis may be an initiating event in the development of atherosclerosis. However, the expression and function of G0S2 in vascular ECs remain unknown. Here, we reported for the first time that G0S2 is expressed in arterial ECs. Ectopic expression of G0S2 increased neutral lipid accumulation in cultured ECs. However, G0S2 prevented ECs from serum-free starvation stress- and hydrogen peroxide (H2O2)-induced apoptosis. G0S2 blocked the H2O2-induced dissipation of mitochondrial membrane potential. G0S2 decreased the release of cytochrome c from mitochondria into the cytosol, followed by activation of caspase-9 and caspase-3. The anti-apoptotic effect of G0S2 was Bcl-2 and adipose triglyceride lipase independent. In contrast, gene silence of G0S2 increased serum-free starvation stress-induced EC apoptosis and decreased the formation of capillary-like structures. We further found that G0S2 couples with the F0F1-ATP synthase in ECs. Levels of ATP were elevated, whereas reactive oxygen species levels were reduced in G0S2-expressing ECs. G0S2 can inhibit endothelial denudation secondary to H2O2-induced injury to ECs in vivo. These results indicate that G0S2 acts as a prosurvival molecule in ECs. Taken together, our results indicate that G0S2 has a protective function in ECs and may be a potential target for the treatment of cardiovascular diseases associated with reactive oxygen species-induced EC injury, such as atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Yinfang Wang
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yahui Zhang
- Department of Pathophysiology, Hubei University of Medicine, Hubei, China; and
| | - Yichun Zhu
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | - Peng Zhang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Xu X, Feng L, Liu Y, Zhou WX, Ma YC, Fei GJ, An N, Li Y, Wu X, Yao F, Cheng SJ, Lu XH. Differential gene expression profiling of gastric intraepithelial neoplasia and early-stage adenocarcinoma. World J Gastroenterol 2014; 20:17883-17893. [PMID: 25548486 PMCID: PMC4273138 DOI: 10.3748/wjg.v20.i47.17883] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the differentiated whole genome expression profiling of gastric high- and low-grade intraepithelial neoplasia and early-stage adenocarcinoma.
METHODS: Gastric specimens from an upper magnifying chromoendoscopic targeted biopsy were collected from March 2010 to May 2013. Whole genome expression profiling was performed on 19 low-grade intraepithelial neoplasia (LGIN), 20 high-grade intraepithelial neoplasia (HGIN), 19 early-stage adenocarcinoma (EGC), and 19 chronic gastritis tissue samples using Agilent 4 × 44K Whole Human Genome microarrays. Differentially expressed genes between different types of lesions were identified using an unpaired t-test and corrected with the Benjamini and Hochberg false discovery rate algorithm. A gene ontology (GO) enrichment analysis was performed using the GeneSpring software GX 12.6. The differentially expressed gene was verified using a real-time TaqMan® PCR assay with independent tissue samples, including 26 LGIN, 15 HGIN, 14 EGC, and 20 chronic gastritis. The expression of G0S2 were further validated by immunohistochemical staining (IHC) in 24 LGIN, 40 HGIN, 30 EGC and 61 chronic gastritis specimens.
RESULTS: The gene expression patterns of LGIN and HGIN tissues were distinct. There were 2521 significantly differentially expressed transcripts in HGIN, with 951 upregulated and 1570 downregulated. A GO enrichment analysis demonstrated that the most striking overexpressed transcripts in HGIN compared with LGIN were in the category of metabolism, defense response, and nuclear factor κB (NF-κB) cascade. While the vast majority of transcripts had barely altered expression in HGIN and EGC tissues, only 38 transcripts were upregulated in EGC. A GO enrichment analysis revealed that the alterations of the immune response were most prominent in the progression from HGIN to EGC. It is worth noting that, compared with LGIN, 289 transcripts were expressed at higher levels both in HGIN and EGC. A characteristic gene, G0/G1 switch 2 (G0S2) was one of the 289 transcripts and related to metabolism, the immune response, and the NF-κB cascade, and its expression was validated in independent samples through real-time TaqMan® PCR and immunohistochemical staining. In real-time PCR analysis, the expression of G0S2 was elevated both in HGIN and EGC compared with that in LGIN (P < 0.01 and P < 0.001, respectively). In IHC analysis, G0S2 immunoreactivity was detected in the cytoplasmic of neoplastic cells, but was undetectable in chronic gastritis cells. The G0S2 expression in HGIN was higher than that of LGIN (P = 0.012, χ2 = 6.28) and EGC (P = 0.008, χ2 = 6.94).
CONCLUSION: A clear biological distinction between gastric high- and low-grade intraepithelial neoplasia was identified, and provides molecular evidence for clinical application.
Collapse
|
18
|
Cerk IK, Salzburger B, Boeszoermenyi A, Heier C, Pillip C, Romauch M, Schweiger M, Cornaciu I, Lass A, Zimmermann R, Zechner R, Oberer M. A peptide derived from G0/G1 switch gene 2 acts as noncompetitive inhibitor of adipose triglyceride lipase. J Biol Chem 2014; 289:32559-70. [PMID: 25258314 PMCID: PMC4239610 DOI: 10.1074/jbc.m114.602599] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The protein G0/G1 switch gene 2 (G0S2) is a small basic protein that functions as an endogenous inhibitor of adipose triglyceride lipase (ATGL), a key enzyme in intracellular lipolysis. In this study, we identified a short sequence covering residues Lys-20 to Ala-52 in G0S2 that is still fully capable of inhibiting mouse and human ATGL. We found that a synthetic peptide corresponding to this region inhibits ATGL in a noncompetitive manner in the nanomolar range. This peptide is highly selective for ATGL and does not inhibit other lipases, including hormone-sensitive lipase, monoacylglycerol lipase, lipoprotein lipase, and patatin domain-containing phospholipases 6 and 7. Because increased lipolysis is linked to the development of metabolic disorders, the inhibition of ATGL by G0S2-derived peptides may represent a novel therapeutic tool to modulate lipolysis.
Collapse
Affiliation(s)
- Ines K Cerk
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Barbara Salzburger
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Andras Boeszoermenyi
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Christoph Heier
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Christoph Pillip
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Matthias Romauch
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Martina Schweiger
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Irina Cornaciu
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Robert Zimmermann
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Monika Oberer
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
19
|
Lu K, Xie S, Han S, Zhang J, Chang X, Chao J, Huang Q, Yuan Q, Lin H, Xu L, Shen C, Tan M, Qu S, Wang C, Song X. Preparation of a nano emodin transfersome and study on its anti-obesity mechanism in adipose tissue of diet-induced obese rats. J Transl Med 2014; 12:72. [PMID: 24641917 PMCID: PMC3994574 DOI: 10.1186/1479-5876-12-72] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 03/06/2014] [Indexed: 01/04/2023] Open
Abstract
Objective To describe the preparation of nano emodin transfersome (NET) and investigate its effect on mRNA expression of adipose triglyceride lipase (ATGL) and G0/G1 switch gene 2 (G0S2) in adipose tissue of diet-induced obese rats. Methods NET was prepared by film-ultrasonic dispersion method. The effects of emodin components at different ratios on encapsulation efficiency were investigated.The NET envelopment rate was determined by ultraviolet spectrophotometry. The particle size and Zeta potential of NET were evaluated by Zetasizer analyzer. Sixty male SD rats were assigned to groups randomly. After 8-week treatment, body weight, wet weight of visceral fat and the percentage of body fat (PBF) were measured. Fasting blood glucose and serum lipid levels were determined. The adipose tissue section was HE stained, and the cellular diameter and quantity of adipocytes were evaluated by light microscopy. The mRNA expression of ATGL and G0S2 from the peri-renal fat tissue was assayed by RT-PCR. Results The appropriate formulation was deoxycholic acid sodium salt vs. phospholipids 1:8, cholesterol vs. phospholipids 1:3, vitamin Evs. phospholipids 1:20, and emodin vs. phospholipid 1:6. Zeta potential was −15.11 mV, and the particle size was 292.2 nm. The mean encapsulation efficiency was (69.35 ± 0.25)%. Compared with the obese model group, body weight, wet weight of visceral fat, PBF and mRNA expression of G0S2 from peri-renal fat tissue were decreased significantly after NET treatment (all P < 0.05), while high-density lipoprotein cholesterol (HDL-C), the diameter of adipocytes and mRNA expression of ATGL from peri-renal fat tissue were increased significantly (all P < 0.05). Conclusion The preparation method is simple and reasonable. NET with negative electricity was small and uniform in particle size, with high encapsulation efficiency and stability. NET could reduce body weight and adipocyte size, and this effect was associated with the up-regulation of ATGL, down-regulation of G0S2 expression in the adipose tissue, and improved insulin sensitivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiaolian Song
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
20
|
Ma T, Lopez-Aguiar AGN, Li A, Lu Y, Sekula D, Nattie EE, Freemantle S, Dmitrovsky E. Mice lacking G0S2 are lean and cold-tolerant. Cancer Biol Ther 2014; 15:643-50. [PMID: 24556704 DOI: 10.4161/cbt.28251] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
G 0/G 1 switch gene 2 (G0S2) is a protein that was first identified in a search for lymphocyte G 0/G 1 switch genes. A direct role for G0S2 in cell cycle regulation has proven elusive. Yet, there is prior evidence for G0S2 functioning in tumor suppression, immune regulation and lipolysis. To explore definitively G0S2 functions, mice lacking G0S2 were generated and characterized. G0S2(-/-) mice were born at a Mendelian ratio and were phenotypically normal, with the exception of a possible lactation defect. G0S2(-/-) female mice carried viable pups to term, but could not typically sustain them beyond 48 h. G0S2 is shown here to be most highly expressed in adipose tissue. It is also expressed in liver, skeletal muscle, lung, ventricles of the heart, and components of the kidney. G0S2 loss significantly decreased relative body weight gain as compared with wild-type (WT) (G0S2(+/+)) mice, with a significant decrease in gonadal fat pad weight and a significant increase in serum glycerol levels. This decreased relative body weight gain is not associated with a significant decrease in food intake or increase in activity of G0S2(-/-) mice. In fact, G0S2(-/-) mice were significantly less active at night than G0S2(+/+) mice. When fed with a high fat diet (45% fat diet), G0S2 loss did not prevent diet-induced obesity in mice. Intriguingly, G0S2 loss improved acute cold tolerance, augmenting expression of genes involved in thermogenesis. In summary, in vivo roles for G0S2 were found in lactation, energy balance, and thermogenesis. This study provides a basis for tumor suppressive effects of G0S2 by regulating lipolysis.
Collapse
Affiliation(s)
- Tian Ma
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | | | - Aihua Li
- Department of Physiology and Neurobiology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - Yun Lu
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - David Sekula
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - Eugene E Nattie
- Department of Physiology and Neurobiology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - Sarah Freemantle
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA
| | - Ethan Dmitrovsky
- Department of Pharmacology and Toxicology; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Department of Medicine; Geisel School of Medicine at Dartmouth; Hanover, NH USA; Norris Cotton Cancer Center; Dartmouth-Hitchcock Medical Center; Lebanon, NH USA
| |
Collapse
|
21
|
Yamada T, Park CS, Shen Y, Rabin KR, Lacorazza HD. G0S2 inhibits the proliferation of K562 cells by interacting with nucleolin in the cytosol. Leuk Res 2014; 38:210-7. [PMID: 24183236 PMCID: PMC3946941 DOI: 10.1016/j.leukres.2013.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 09/19/2013] [Accepted: 10/04/2013] [Indexed: 12/28/2022]
Abstract
G0/G1 switch gene 2 (G0S2) is a basic protein with ill-defined function that inhibits the proliferation of hematopoietic stem cells. Herein, we show that treatment of K562 cells with 5-azacytidine (5-Aza) resulted in a 24-fold increase in G0S2 expression and a reduction in cell growth. Conversely, gene demethylation in the presence of G0S2-specific shRNA restored proliferation, further supporting an inhibitory role for G0S2 in cell proliferation. Elevated levels of G0S2 inhibited the division of K562 cells by sequestering the nucleolar phosphoprotein nucleolin in the cytosol. G0S2 inhibited the proliferation of leukemia cells in vivo in xenograft models. Collectively, our data identify a new mechanism that controls proliferation in K562 cells, suggesting a possible tumor suppressor function in leukemia cells.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Chun Shik Park
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ye Shen
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Karen R Rabin
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - H Daniel Lacorazza
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Affiliation(s)
- Kimberly J Payne
- Center for Health Disparities and Molecular Medicine, Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, 1st floor Mortensen Hall, 11085 Campus St., Loma Linda, CA 92350, USA.
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
23
|
Yamada T, Park CS, Lacorazza HD. Genetic control of quiescence in hematopoietic stem cells. Cell Cycle 2013; 12:2376-83. [PMID: 23839041 PMCID: PMC3841317 DOI: 10.4161/cc.25416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023] Open
Abstract
Cellular quiescence is a reversible cell cycle arrest that is poised to re-enter the cell cycle in response to a combination of cell-intrinsic factors and environmental cues. In hematopoietic stem cells, a coordinated balance between quiescence and differentiating proliferation ensures longevity and prevents both genetic damage and stem cell exhaustion. However, little is known about how all these processes are integrated at the molecular level. We will briefly review the environmental and intrinsic control of stem cell quiescence and discuss a new model that involves a protein-to-protein interaction between G0S2 and the phospho-nucleoprotein nucleolin in the cytosol.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children’s Hospital; Houston, TX USA
| | - Chun Shik Park
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children’s Hospital; Houston, TX USA
| | - H Daniel Lacorazza
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children’s Hospital; Houston, TX USA
| |
Collapse
|
24
|
Eguchi D, Ohuchida K, Kozono S, Ikenaga N, Shindo K, Cui L, Fujiwara K, Akagawa S, Ohtsuka T, Takahata S, Tokunaga S, Mizumoto K, Tanaka M. MAL2 expression predicts distant metastasis and short survival in pancreatic cancer. Surgery 2013; 154:573-82. [PMID: 23876361 DOI: 10.1016/j.surg.2013.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/28/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pancreatic cancer is associated with a devastating prognosis, partially because of its aggressive metastatic ability. Identification of prognostic markers of metastasis would be useful in the clinical management of postoperative patients with pancreatic cancer. Mal, T-cell differentiation protein 2 (MAL2) has been identified as a molecule predictive of metastases; the clinical relevance of MAL2 in pancreatic cancer is unknown. METHODS Orthotopic human pancreatic cancer xenografts from the pancreatic cancer cell line SUIT-2 were established in nude mice. Only liver metastasis was harvested and cultured. These metastatic cycles were repeated 5 times to establish a highly metastatic cell line, termed metastatic SUIT-2 (MS). We investigated proliferation and motility of MS cells compared with those of the parent SUIT-2. Microarray analysis was performed to investigate differences in gene expression. We also performed immunohistochemical analysis of 89 formalin-fixed, paraffin-embedded human pancreatic cancer tissue samples to investigate the clinical significance of MAL2 expression. RESULTS MS cells showed a greater metastatic rate after orthotopic implantation than parental SUIT-2. MS cells had increased motility but decreased proliferation compared with parental SUIT-2. Microarray analyses showed that 26 genes were significantly upregulated (>10-fold) in MS cells compared with parental SUIT-2, particularly MAL2 expression. Immunohistochemical analysis showed that high expression of MAL2 was associated with a lesser survival of postoperative patients (P = .03) and a high rate of distant metastasis (P = .008). CONCLUSION We characterized a newly established pancreatic cancer cell line with highly metastatic potential. MAL2 is a promising predictive marker for distant metastasis and short survival in patients with resected pancreatic cancer.
Collapse
Affiliation(s)
- Daiki Eguchi
- Department of Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ma T, Dong JP, Sekula DJ, Fei DL, Lamph WW, Henderson M, Lu Y, Blumen S, Freemantle SJ, Dmitrovsky E. Repression of exogenous gene expression by the retinoic acid target gene G0S2. Int J Oncol 2013; 42:1743-53. [PMID: 23546556 PMCID: PMC3661193 DOI: 10.3892/ijo.2013.1876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/18/2013] [Indexed: 11/18/2022] Open
Abstract
The G0/G1 switch gene 2 (G0S2) is rapidly induced by all-trans-retinoic acid (RA)-treatment of acute promyelocytic leukemia (APL) and other cells. G0S2 regulates lipolysis via inhibition of adipose triglyceride lipase (ATGL). This study found that retinoic acid receptor (RAR), but not retinoid X receptor (RXR) agonists induced G0S2 expression in APL cells. Novel G0S2 functions were uncovered that included repression of exogenous gene expression and transcriptional activity. Transient G0S2 transfection repressed the activities of multiple reporter constructs (including the retinoid-regulated species RARβ, UBE1L and G0S2); this occurred in diverse cell contexts. This inhibition was antagonized by siRNA-mediated G0S2 knockdown. To determine the inhibitory effects were not due to transient G0S2 expression, G0S2 was stably overex-pressed in cells without appreciable basal G0S2 expression. As expected, this repressed transcriptional activities. Intriguingly, transfection of G0S2 did not affect endogenous RARβ, UBE1L or G0S2 expression. Hence, only exogenously expressed genes were affected by G0S2. The domain responsible for this repression was localized to the G0S2 hydrophobic domain (HD). This was the same region responsible for the ability of G0S2 to inhibit ATGL activity. Whether an interaction with ATGL accounted for this new G0S2 activity was studied. Mimicking the inhibition of ATGL by oleic acid treatment that increased lipid droplet size or ATGL siRNA knockdown did not recapitulate G0S2 repressive effects. Engineered gain of ATGL expression did not rescue G0S2 transcriptional repression either. Thus, transcriptional repression by G0S2 did not depend on the ability of G0S2 to inhibit ATGL. Subcellular localization studies revealed that endogenous and exogenously-expressed G0S2 proteins were localized to the cytoplasm, particularly in the perinuclear region. Expression of a mutant G0S2 species that lacked the HD domain altered cytosolic G0S2 localization. This linked G0S2 subcellular localization to G0S2 transcriptional repression. The potential mechanisms responsible for this G0S2 repression are examined.
Collapse
Affiliation(s)
- Tian Ma
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Knaup J, Verwanger T, Gruber C, Ziegler V, Bauer JW, Krammer B. Epidermolysis bullosa - a group of skin diseases with different causes but commonalities in gene expression. Exp Dermatol 2012; 21:526-30. [PMID: 22716248 DOI: 10.1111/j.1600-0625.2012.01519.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Epidermolysis bullosa (EB) is a group of hereditary skin disorders. Although each subtype is caused by mutations in genes encoding differentially located components of the skin, the resulting phenotype is similar. In this study, we investigated similarities in the gene expression profiles of each subtype on mRNA level. Type XVI collagen (COL16A1), G0/G1 switch 2 (G0S2), fibronectin (FN1), ribosomal protein S27A (RPS27A) and low density lipoprotein receptor (LDLR) were shown to exhibit corresponding changes in gene expression in all three EB subtypes. While COL16A1, G0S2 and FN1 are up-regulated, LDLR and RPS27A mRNA levels are decreased. These data indicate that EB cells seem to take measures increasing their mechanical stability. Apoptosis is likely to be exacerbated, and migratory potential appears to be elevated. Protein degradation is hampered, and the release of fatty acids and glycerol is restricted, probably to save energy. These commonalities might benefit existing EB treatment strategies or could help to reveal new starting points for the treatment of EB in the future.
Collapse
Affiliation(s)
- Julia Knaup
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
27
|
Heckmann BL, Zhang X, Xie X, Liu J. The G0/G1 switch gene 2 (G0S2): regulating metabolism and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:276-81. [PMID: 23032787 DOI: 10.1016/j.bbalip.2012.09.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 02/06/2023]
Abstract
The G0/G1 switch gene 2 (G0S2) was originally identified in blood mononuclear cells following induced cell cycle progression. Translation of G0S2 results in a small basic protein of 103 amino acids in size. It was initially believed that G0S2 mediates re-entry of cells from the G0 to G1 phase of the cell cycle. Recent studies have begun to reveal the functional aspects of G0S2 and its protein product in various cellular settings. To date the best-known function of G0S2 is its direct inhibitory capacity on the rate-limiting lipolytic enzyme adipose triglyceride lipase (ATGL). Other studies have illustrated key features of G0S2 including sub-cellular localization, expression profiles and regulation, and possible functions in cellular proliferation and differentiation. In this review we present the current knowledge base regarding all facets of G0S2, and pose a variety of questions and hypotheses pertaining to future research directions.
Collapse
Affiliation(s)
- Bradlee L Heckmann
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Scottsdale, Arizona 85259, USA
| | | | | | | |
Collapse
|
28
|
Yamada T, Park CS, Burns A, Nakada D, Lacorazza HD. The cytosolic protein G0S2 maintains quiescence in hematopoietic stem cells. PLoS One 2012; 7:e38280. [PMID: 22693613 PMCID: PMC3365016 DOI: 10.1371/journal.pone.0038280] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/02/2012] [Indexed: 02/06/2023] Open
Abstract
Bone marrow hematopoietic stem cells (HSCs) balance proliferation and differentiation by integrating complex transcriptional and post-translational mechanisms regulated by cell intrinsic and extrinsic factors. We found that transcripts of G(0)/G(1) switch gene 2 (G0S2) are enriched in lineage(-) Sca-1(+) c-kit(+) (LSK) CD150(+) CD48(-) CD41(-) cells, a population highly enriched for quiescent HSCs, whereas G0S2 expression is suppressed in dividing LSK CD150(+) CD48(-) cells. Gain-of-function analyses using retroviral expression vectors in bone marrow cells showed that G0S2 localizes to the mitochondria, endoplasmic reticulum, and early endosomes in hematopoietic cells. Co-transplantation of bone marrow cells transduced with the control or G0S2 retrovirus led to increased chimerism of G0S2-overexpressing cells in femurs, although their contribution to the blood was reduced. This finding was correlated with increased quiescence in G0S2-overexpressing HSCs (LSK CD150(+) CD48(-)) and progenitor cells (LS(-)K). Conversely, silencing of endogenous G0S2 expression in bone marrow cells increased blood chimerism upon transplantation and promoted HSC cell division, supporting an inhibitory role for G0S2 in HSC proliferation. A proteomic study revealed that the hydrophobic domain of G0S2 interacts with a domain of nucleolin that is rich in arginine-glycine-glycine repeats, which results in the retention of nucleolin in the cytosol. We showed that this cytosolic retention of nucleolin occurs in resting, but not proliferating, wild-type LSK CD150(+) CD48(-) cells. Collectively, we propose a novel model of HSC quiescence in which elevated G0S2 expression can sequester nucleolin in the cytosol, precluding its pro-proliferation functions in the nucleolus.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Chun Shik Park
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Audrea Burns
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| | - H. Daniel Lacorazza
- Department of Pathology & Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, United States of America
| |
Collapse
|
29
|
Watanabe K, Emoto N, Hamano E, Sunohara M, Kawakami M, Kage H, Kitano K, Nakajima J, Goto A, Fukayama M, Nagase T, Yatomi Y, Ohishi N, Takai D. Genome structure-based screening identified epigenetically silenced microRNA associated with invasiveness in non-small-cell lung cancer. Int J Cancer 2011; 130:2580-90. [DOI: 10.1002/ijc.26254] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/01/2011] [Indexed: 12/31/2022]
|
30
|
Zeng F, Xie L, Pang X, Liu W, Nie Q, Zhang X. Complementary deoxyribonucleic acid cloning of avian G0/G1 switch gene 2, and its expression and association with production traits in chicken. Poult Sci 2011; 90:1548-54. [PMID: 21673171 DOI: 10.3382/ps.2010-01204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As a member of the G0/G1 switch genes, G0/G1 switch gene 2 (G0S2) is related to many regulatory processes in the human and mouse. For example, it interacts directly with adipose triglyceride lipase to active its triglyceride hydrolysis activities. In this study, G0S2 gene cDNA of the chicken (522 bp), zebra finch (420 bp), sparrow (417 bp), pigeon (417 bp), and Bengalese finch (416 bp) were cloned, and each of them was encoded as a protein of 99 amino acids. The expression of G0S2 mRNA was determined by real-time reverse-transcription PCR analysis in 20 tested tissues of 21- and 91-d-old chickens. The highest mRNA level was found in abdominal fat and subcutaneous fat in both stages. Considerable G0S2 mRNA was also observed in chicken heart and muscle tissues. Expression of the chicken G0S2 gene varied at different stages and sexes. The abundance of G0S2 mRNA on d 21 was far higher than that on d 91. The abundance in female chickens was higher than that in males at both stages. In the coding region, we found 4 SNP, among which only G197A led to a change in the amino acids (Arg66Gln); the rest were synonymous substitutions. Association analysis showed that both G102A and G255A were significantly associated with head width (P < 0.05) and were highly significantly associated with leg muscle color (P < 0.01). The G102A was significantly associated with shank diameter at 63 d (P < 0.05). The SNP G197A was significantly associated with shank diameter at 49 d; CP content of leg muscle; total weights of the heart, liver, gizzard, and glandular stomach; and small intestine length (P < 0.05). In conclusion, much higher G0S2 mRNA was detected in both male and female chickens at 21 d of age than at 91 d of age, and 3 SNP (G102A, G197, and G255A) were associated with chicken production traits.
Collapse
Affiliation(s)
- F Zeng
- Department of Animal Genetics, Breeding and Reproduction, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | | | | | | | | | | |
Collapse
|
31
|
Barresi V, Ragusa A, Fichera M, Musso N, Castiglia L, Rappazzo G, Travali S, Mattina T, Romano C, Cocchi G, Condorelli DF. Decreased expression of GRAF1/OPHN-1-L in the X-linked alpha thalassemia mental retardation syndrome. BMC Med Genomics 2010; 3:28. [PMID: 20602808 PMCID: PMC2915949 DOI: 10.1186/1755-8794-3-28] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/06/2010] [Indexed: 11/24/2022] Open
Abstract
Background ATRX is a severe X-linked disorder characterized by mental retardation, facial dysmorphism, urogenital abnormalities and alpha-thalassemia. The disease is caused by mutations in ATRX gene, which encodes a protein belonging to the SWI/SNF DNA helicase family, a group of proteins involved in the regulation of gene transcription at the chromatin level. In order to identify specific genes involved in the pathogenesis of the disease, we compared, by cDNA microarray, the expression levels of approximately 8500 transcripts between ATRX and normal males of comparable age. Methods cDNA microarray was performed using total RNA from peripheral blood mononuclear cells of ATRX and normal males. Microarray results were validated by quantitative real-time polymerase chain reaction. Results cDNA microarray analysis showed that 35 genes had a lower expression (30-35% of controls) while 25 transcripts had a two-fold higher expression in comparison to controls. In the microarray results the probe for oligophrenin-1, a gene known for its involvement in mental retardation, showed a decreased hybridization signal. However, such gene was poorly expressed in blood mononuclear cells and its decrease was not confirmed in the quantitative real-time RT-PCR assay. On the other hand, the expression of an homologous gene, the GTPase regulator associated with the focal adhesion kinase 1/Oligophrenin-1-like (GRAF1/OPHN-1-L), was relatively high in blood mononuclear cells and significantly decreased in ATRX patients. The analysis of the expression pattern of the GRAF1/OPHN-1-L gene in human tissues and organs revealed the predominant brain expression of a novel splicing isoform, called variant-3. Conclusions Our data support the hypothesis of a primary role for altered gene expression in ATRX syndrome and suggest that the GRAF1/OPHN-1-L gene might be involved in the pathogenesis of the mental retardation. Moreover a novel alternative splicing transcript of such gene, predominantly expressed in brain tissues, was identified.
Collapse
Affiliation(s)
- Vincenza Barresi
- Laboratorio sui Sistemi Complessi, Scuola Superiore di Catania, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang YW, Luo J, Weng YI, Mutch DG, Goodfellow PJ, Miller DS, Huang THM. Promoter hypermethylation of CIDEA, HAAO and RXFP3 associated with microsatellite instability in endometrial carcinomas. Gynecol Oncol 2010; 117:239-47. [PMID: 20211485 PMCID: PMC2849881 DOI: 10.1016/j.ygyno.2010.02.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/03/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE DNA promoter methylation is an epigenetic phenomenon for long-term gene silencing during tumorigenesis. The purpose of this study is to identify novel hypermethylated loci associated with clinicopathologic variables in endometrioid endometrial carcinomas. METHODS To find hypermethylated promoter loci, we used differential methylation hybridization coupling with microarray and further validated by combined bisulfite restriction analysis and MassARRAY assay. Methylation levels of candidate loci were corrected with clinicopathologic factors of endometrial carcinomas. RESULTS Increased promoter methylation of CIDE, HAAO and RXFP3 was detected in endometrial carcinomas compared with adjacent normal tissues, and was associated with decreased gene expression of all three genes. In a clinical cohort, promoter hypermethylation on CIDEA, HAAO and RXFP3 was detected in 85, 63 and 71% of endometrial carcinomas, respectively (n=118, P<0.001) compared with uninvolved normal endometrium. Methylation status of CIDEA, HAAO and RXFP3 had significant association with microsatellite instability in tumors (P<0.001). Furthermore, methylation levels of HAAO were further found to relate to disease-free survivals (P=0.034). CONCLUSIONS Hypermethylation of CIDEA, HAAO and RXFP3 promoter regions appears to be a frequent event in endometrial carcinomas. Hypermethylation at these loci is strongly associated with microsatellite instability status. Moreover, HAAO methylation predicts disease-free survival in this cohort of patients with endometrioid endometrial cancer.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jingqin Luo
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, St. Louis, MO 63110, USA
| | - Yu-I Weng
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - David G. Mutch
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, St. Louis, MO 63110, USA
| | - Paul J. Goodfellow
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, St. Louis, MO 63110, USA
| | - David S. Miller
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tim H.-M. Huang
- Human Cancer Genetics Program, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|