1
|
Lizcano F, Arroyave F. Control of Adipose Cell Browning and Its Therapeutic Potential. Metabolites 2020; 10:metabo10110471. [PMID: 33227979 PMCID: PMC7699191 DOI: 10.3390/metabo10110471] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue is the largest endocrine organ in humans and has an important influence on many physiological processes throughout life. An increasing number of studies have described the different phenotypic characteristics of fat cells in adults. Perhaps one of the most important properties of fat cells is their ability to adapt to different environmental and nutritional conditions. Hypothalamic neural circuits receive peripheral signals from temperature, physical activity or nutrients and stimulate the metabolism of white fat cells. During this process, changes in lipid inclusion occur, and the number of mitochondria increases, giving these cells functional properties similar to those of brown fat cells. Recently, beige fat cells have been studied for their potential role in the regulation of obesity and insulin resistance. In this context, it is important to understand the embryonic origin of beige adipocytes, the response of adipocyte to environmental changes or modifications within the body and their ability to transdifferentiate to elucidate the roles of these cells for their potential use in therapeutic strategies for obesity and metabolic diseases. In this review, we discuss the origins of the different fat cells and the possible therapeutic properties of beige fat cells.
Collapse
Affiliation(s)
- Fernando Lizcano
- Center of Biomedical Investigation, (CIBUS), Universidad de La Sabana, 250008 Chia, Colombia
- Correspondence:
| | - Felipe Arroyave
- Doctoral Program in Biociencias, Universidad de La Sabana, 250008 Chia, Colombia
| |
Collapse
|
2
|
Sato T, Vargas D, Miyazaki K, Uchida K, Ariyani W, Miyazaki M, Okada J, Lizcano F, Koibuchi N, Shimokawa N. EID1 suppresses lipid accumulation by inhibiting the expression of GPDH in 3T3-L1 preadipocytes. J Cell Physiol 2020; 235:6725-6735. [PMID: 32056205 DOI: 10.1002/jcp.29567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/13/2020] [Indexed: 01/23/2023]
Abstract
The imbalance between food intake and energy expenditure causes high accumulation of triglycerides in adipocytes. Obesity is related with the increased lipid accumulation in white adipose tissue, which is a major risk factor for the development of metabolic disorders, such as type 2 diabetes and cardiovascular disease. This study highlights the role of E1A-like inhibitor of differentiation 1 (EID1) in the modulation of adipogenesis through the downregulation of glycerol-3-phosphate dehydrogenase (GPDH), which is a key enzyme in the synthesis of triglycerides and is considered to be a marker of adipogenesis. By analyzing DNA microarray data, we found that when EID1 is overexpressed in preadipocytes (3T3-L1 cells) during adipocyte differentiation, EID1 inhibits lipid accumulation through the downregulation of GPDH. In contrast, EID1 is not involved in the regulation of intracellular glucose via the translocation of glucose transporter. A confocal image analysis showed that EID1 is located in the nucleus of preadipocytes in the form of speckles, which could be involved as a regulator of the transcriptional process. We further confirmed that EID1 is able to bind to the promoter sequence of GPDH in the nucleus. These findings provide a molecular explanation for the inhibitory effect of EID1 on lipid accumulation in adipocytes.
Collapse
Affiliation(s)
- Tomohiko Sato
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Department of Nutrition, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan.,Department of Physical Therapy, Ota College of Medical Technology, Ota, Gunma, Japan
| | - Diana Vargas
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Department of Nutrition, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan.,Center of Biomedical Research, Universidad de La Sabana, Chia, Colombia
| | - Kakushin Miyazaki
- Department of Nutrition, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Kaoru Uchida
- Department of Nutrition, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Winda Ariyani
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Mitsue Miyazaki
- Department of Nutrition, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | - Junichi Okada
- Department of Physical Therapy, Ota College of Medical Technology, Ota, Gunma, Japan
| | - Fernando Lizcano
- Center of Biomedical Research, Universidad de La Sabana, Chia, Colombia
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Noriaki Shimokawa
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Department of Nutrition, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| |
Collapse
|
3
|
Vargas D, Shimokawa N, Kaneko R, Rosales W, Parra A, Castellanos Á, Koibuchi N, Lizcano F. Regulation of human subcutaneous adipocyte differentiation by EID1. J Mol Endocrinol 2016; 56:113-22. [PMID: 26643909 DOI: 10.1530/jme-15-0148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 12/12/2022]
Abstract
Increasing thermogenesis in white adipose tissues can be used to treat individuals at high risk for obesity and cardiovascular disease. The objective of this study was to determine the function of EP300-interacting inhibitor of differentiation (EID1), an inhibitor of muscle differentiation, in the induction of beige adipocytes from adipose mesenchymal stem cells (ADMSCs). Subcutaneous adipose tissue was obtained from healthy women undergoing abdominoplasty. ADMSCs were isolated in vitro, grown, and transfected with EID1 or EID1 siRNA, and differentiation was induced after 48 h by administering rosiglitazone. The effects of EID1 expression under the control of the aP2 promoter (aP2-EID1) were also evaluated in mature adipocytes that were differentiated from ADMSCs. Transfection of EID1 into ADMSCs reduced triglyceride accumulation while increasing levels of thermogenic proteins, such as PGC1α, TFAM, and mitochondrial uncoupling protein 1 (UCP1), all of which are markers of energy expenditure and mitochondrial activity. Furthermore, increased expression of the beige phenotype markers CITED1 and CD137 was observed. Transfection of aP2-EID1 transfection induced the conversion of mature white adipocytes to beige adipocytes, as evidenced by increased expression of PGC1α, UCP1, TFAM, and CITED1. These results indicate that EID1 can modulate ADMSCs, inducing a brown/beige lineage. EID1 may also activate beiging in white adipocytes obtained from subcutaneous human adipose tissue.
Collapse
Affiliation(s)
- Diana Vargas
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Noriaki Shimokawa
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Ryosuke Kaneko
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Wendy Rosales
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Adriana Parra
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Ángela Castellanos
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Noriyuki Koibuchi
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| | - Fernando Lizcano
- Center of Biomedical Research (CIBUS)Universidad de La Sabana, Km. 7 Autopista Norte de Bogota, 140013 Chia, ColombiaDepartment of Integrative PhysiologyGunma University, Maebashi, JapanInstitute of Experimental Animal ResearchGunma University, Maebashi, Japan
| |
Collapse
|
4
|
Zhang C, Li X, Adelmant G, Dobbins J, Geisen C, Oser MG, Wucherpfenning KW, Marto JA, Kaelin WG. Peptidic degron in EID1 is recognized by an SCF E3 ligase complex containing the orphan F-box protein FBXO21. Proc Natl Acad Sci U S A 2015; 112:15372-7. [PMID: 26631746 PMCID: PMC4687553 DOI: 10.1073/pnas.1522006112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
EP300-interacting inhibitor of differentiation 1 (EID1) belongs to a protein family implicated in the control of transcription, differentiation, DNA repair, and chromosomal maintenance. EID1 has a very short half-life, especially in G0 cells. We discovered that EID1 contains a peptidic, modular degron that is necessary and sufficient for its polyubiquitylation and proteasomal degradation. We found that this degron is recognized by an Skp1, Cullin, and F-box (SCF)-containing ubiquitin ligase complex that uses the F-box Only Protein 21 (FBXO21) as its substrate recognition subunit. SCF(FBXO21) polyubiquitylates EID1 both in vitro and in vivo and is required for the efficient degradation of EID1 in both cycling and quiescent cells. The EID1 degron partially overlaps with its retinoblastoma tumor suppressor protein-binding domain and is congruent with a previously defined melanoma-associated antigen-binding motif shared by EID family members, suggesting that binding to retinoblastoma tumor suppressor and melanoma-associated antigen family proteins could affect the polyubiquitylation and turnover of EID family members in cells.
Collapse
Affiliation(s)
- Cuiyan Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Xiaotong Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Guillaume Adelmant
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215
| | - Jessica Dobbins
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215
| | - Christoph Geisen
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215; Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215
| | - Kai W Wucherpfenning
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA 02215; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215; Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
5
|
Modifications of Human Subcutaneous ADMSC after PPARγ Activation and Cold Exposition. Stem Cells Int 2015; 2015:196348. [PMID: 26339249 PMCID: PMC4539182 DOI: 10.1155/2015/196348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells are a diverse population of cells with a wide range of potential therapeutic applications. In particular, cells from adipose tissue have the distinction of being easily accessible and contain a lot of stem cells. ADMSCs can be induced to mature adipocyte and activate the energy expenditure upon treatment with total PPARγ agonists. Additionally these cells may respond to cold by activating the thermogenic program. In the present study, we determined the effect of partial agonism of PPARγ and temperature reduction on phenotype and metabolic activity of ADMSCs from human adipose subcutaneous tissue. We found that adipocytes differentiated with total and partial agonists of PPARγ and exposed to 31°C are able to respond to cold significantly increasing the expression of thermogenic proteins such as UCP1, PGC1α, and CITED1, a marker of beige phenotype. Additionally, we found that adipocyte cells subjected to cold had a reduction in triglycerides and increased adiponectin levels. These data confirm the promising role of ADMSCs as a treatment for metabolic disorders since it is possible to induce them to mature adipocytes and modulate their phenotype toward a cell with high-energy expenditure and metabolic beneficial effect.
Collapse
|
6
|
Lizcano F, Guzmán G. Estrogen Deficiency and the Origin of Obesity during Menopause. BIOMED RESEARCH INTERNATIONAL 2014; 2014:757461. [PMID: 24734243 PMCID: PMC3964739 DOI: 10.1155/2014/757461] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/27/2022]
Abstract
Sex hormones strongly influence body fat distribution and adipocyte differentiation. Estrogens and testosterone differentially affect adipocyte physiology, but the importance of estrogens in the development of metabolic diseases during menopause is disputed. Estrogens and estrogen receptors regulate various aspects of glucose and lipid metabolism. Disturbances of this metabolic signal lead to the development of metabolic syndrome and a higher cardiovascular risk in women. The absence of estrogens is a clue factor in the onset of cardiovascular disease during the menopausal period, which is characterized by lipid profile variations and predominant abdominal fat accumulation. However, influence of the absence of these hormones and its relationship to higher obesity in women during menopause are not clear. This systematic review discusses of the role of estrogens and estrogen receptors in adipocyte differentiation, and its control by the central nervous systemn and the possible role of estrogen-like compounds and endocrine disruptors chemicals are discussed. Finally, the interaction between the decrease in estrogen secretion and the prevalence of obesity in menopausal women is examined. We will consider if the absence of estrogens have a significant effect of obesity in menopausal women.
Collapse
Affiliation(s)
- Fernando Lizcano
- Biomedical Research Center, Universidad de La Sabana (CIBUS), km 7, Autopista Norte de Bogota, Chia, Colombia ; Fundacion Cardio-Infantil Instituto de Cardiologia, Bogota, Colombia
| | - Guillermo Guzmán
- Biomedical Research Center, Universidad de La Sabana (CIBUS), km 7, Autopista Norte de Bogota, Chia, Colombia
| |
Collapse
|
7
|
Dunner S, Sevane N, Garcia D, Levéziel H, Williams JL, Mangin B, Valentini A. Genes involved in muscle lipid composition in 15 European Bos taurus breeds. Anim Genet 2013; 44:493-501. [PMID: 23611291 DOI: 10.1111/age.12044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 11/29/2022]
Abstract
Consumers demand healthy and palatable meat, both factors being affected by fat composition. However, red meat has relatively high concentration of saturated fatty acids and low concentration of the beneficial polyunsaturated fatty acids. To select animals prone to produce particular fat types, it is necessary to identify the genes influencing muscle lipid composition. This paper describes an association study in which a large panel of candidate genes involved in adipogenesis, lipid metabolism and energy homoeostasis was tested for effects on fat composition in 15 European cattle breeds. Sixteen genes were found to have significant effects on different lipid traits, and among these, CFL1 and MYOZ1 were found to have large effects on the ratio of 18:2/18:3, CRI1 on the amount of neutral adrenic acid (22:4 n-6), MMP1 on docosahexaenoic acid (22:6 n-3) and conjugated linoleic acid, PLTP on the ratio of n-6:n-3 and IGF2R on flavour. Several genes - ALDH2, CHRNE, CRHR2, DGAT1, IGFBP3, NEB, SOCS2, SUSP1, TCF12 and FOXO1 - also were found to be associated with both lipid and organoleptic traits although with smaller effect. The results presented here help in understanding the genetic and biochemical background underlying variations in fatty acid composition and flavour in beef.
Collapse
Affiliation(s)
- S Dunner
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Yoo JK, Choi SJ, Kim JK. Expression profiles of subtracted mRNAs during cellular senescence in human mesenchymal stem cells derived from bone marrow. Exp Gerontol 2013; 48:464-71. [PMID: 23466301 DOI: 10.1016/j.exger.2013.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 02/08/2013] [Accepted: 02/19/2013] [Indexed: 12/17/2022]
Abstract
Cellular senescence is an irreversible cell cycle arrest that limits the replicative lifespan of cells. Senescence suppresses development of tumors by regulating aging factors, such as cyclin dependent kinase inhibitor (CKI) and telomerase. Suppression subtractive hybridization (SSH) was used to identify genes that were differentially expressed between young human mesenchymal stem cells (Y-hMSCs) and senescent human mesenchymal stem cells (S-hMSCs). We selected positive clones that were functionally characterized by referring to public databases using NCBI BLAST tool. This search revealed that 19 genes were downregulated, and 43 genes were upregulated in S-hMSCs relative to Y-hMSCs. Among subtracted clones in Y-hMSCs, most of genes markedly were related to metabolic functions. These genes, PDIA3, WDR1, FSTL1, COPG1, LMAN1, and PDIA6, significantly downregulated. Conversely, genes for subtracted clones in S-hMSCs were mostly associated with cell adhesion. In particular, the expression levels of 9 genes, HSP90B1, EID1, ATP2B4, DDAH1, PRNP, RAB1A, PGS5, TM4SF1 and SSR3, gradually increased during senescence. These genes have not previously been identified as being related to cellular senescence, but they seemed to be potentially affected during cellular senescence.
Collapse
Affiliation(s)
- Jung Ki Yoo
- Department of Pharmacy, College of Pharmacy, CHA University, 222 Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-836, Republic of Korea
| | | | | |
Collapse
|
9
|
Bush JR, Wevrick R. Loss of the Prader-Willi obesity syndrome protein necdin promotes adipogenesis. Gene 2012; 497:45-51. [PMID: 22305984 DOI: 10.1016/j.gene.2012.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/19/2012] [Indexed: 01/07/2023]
Abstract
We investigated the role of necdin during adipogenic differentiation. Necdin is one of several genes inactivated in children with Prader-Willi syndrome, who are predisposed to increased adiposity at the expense of lean mass. Necdin promotes neuronal and muscle differentiation and survival through interactions with a variety of proteins, including cell surface receptors, modifiers of protein stability, and transcription factors. In pre-adipocytes, necdin over-expression inhibits adipogenesis, while reducing necdin levels enhances adipogenic differentiation in tissue culture cells. We now directly demonstrate a role for necdin in inhibiting adipogenesis using cells derived from necdin deficient mice.
Collapse
Affiliation(s)
- Jason Russell Bush
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|