1
|
Klem JR, Schwantes-An TH, Abreu M, Suttie M, Gray R, Vo H, Conley G, Foroud TM, Wetherill L, Lovely CB. Mutations in the Bone Morphogenetic Protein signaling pathway sensitize zebrafish and humans to ethanol-induced jaw malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.28.546932. [PMID: 37425959 PMCID: PMC10327032 DOI: 10.1101/2023.06.28.546932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describe ethanol-induced developmental defects including craniofacial malformations. While ethanol-sensitive genetic mutations contribute to facial malformations, the impacted cellular mechanisms remain unknown. Bmp signaling is a key regulator of epithelial morphogenesis driving facial development, providing a possible ethanol-sensitive mechanism. We found that zebrafish mutants for Bmp signaling components are ethanol-sensitive and affect anterior pharyngeal endoderm shape and gene expression, indicating ethanol-induced malformations of the anterior pharyngeal endoderm cause facial malformations. Integrating FASD patient data, we provide the first evidence that variants in the human Bmp receptor gene BMPR1B associate with ethanol-related differences in jaw volume. Our results show that ethanol exposure disrupts proper morphogenesis of, and tissue interactions between, facial epithelia that mirror overall viscerocranial shape changes and are predictive for Bmp-ethanol associations in human jaw development. Our data provide a mechanistic paradigm linking ethanol to disrupted epithelial cell behaviors that underlie facial defects in FASD. Summary Statement In this study, we apply a unique combination of zebrafish-based approaches and human genetic and facial dysmorphology analyses to resolve the cellular mechanisms driven by the ethanol-sensitive Bmp pathway.
Collapse
|
2
|
Clement EJ, Law HCH, Qiao F, Noe D, Trevino JG, Woods NT. Combined Alcohol Exposure and KRAS Mutation in Human Pancreatic Ductal Epithelial Cells Induces Proliferation and Alters Subtype Signatures Determined by Multi-Omics Analysis. Cancers (Basel) 2022; 14:cancers14081968. [PMID: 35454872 PMCID: PMC9027648 DOI: 10.3390/cancers14081968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma is a deadly disease wherein alcohol use increases the risk of developing this cancer. Mutations in the KRAS oncogene are required for alcohol to promote pancreatic cancer in mice, but little is known about the molecular events associated with the combined exposure of alcohol and mutant KRAS expression in pancreas cells. In this study, we use pancreas cell models with and without mutant KRAS to evaluate the impact of chronic alcohol exposure on transcription and protein expression. This study identifies numerous differentially expressed transcripts and proteins that could influence the emergence of oncogenic features, such as increased proliferation, in pancreas cells. Abstract Pancreatic Ductal adenocarcinoma (PDAC) is an aggressive cancer commonly exhibiting KRAS-activating mutations. Alcohol contributes to the risk of developing PDAC in humans, and murine models have shown alcohol consumption in the context of KRAS mutation in the pancreas promotes the development of PDAC. The molecular signatures in pancreas cells altered by alcohol exposure in the context of mutant KRAS could identify pathways related to the etiology of PDAC. In this study, we evaluated the combined effects of alcohol exposure and KRAS mutation status on the transcriptome and proteome of pancreatic HPNE cell models. These analyses identified alterations in transcription and translational processes in mutant KRAS cells exposed to alcohol. In addition, multi-omics analysis suggests an increase in the correlation between mRNA transcript and protein abundance in cells exposed to alcohol with an underlying KRAS mutation. Through differential co-expression, SERPINE1 was found to be influential for PDAC development in the context of mutant KRAS and ethanol. In terms of PDAC subtypes, alcohol conditioning of HPNE cells expressing mutant KRAS decreases the Inflammatory subtype signature and increases the Proliferative and Metabolic signatures, as we previously observed in patient samples. The alterations in molecular subtypes were associated with an increased sensitivity to chemotherapeutic agents gemcitabine, irinotecan, and oxaliplatin. These results provide a framework for distinguishing the molecular dysregulation associated with combined alcohol and mutant KRAS in a pancreatic cell line model.
Collapse
Affiliation(s)
- Emalie J. Clement
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.J.C.); (H.C.-H.L.); (F.Q.)
| | - Henry C.-H. Law
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.J.C.); (H.C.-H.L.); (F.Q.)
| | - Fangfang Qiao
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.J.C.); (H.C.-H.L.); (F.Q.)
| | - Dragana Noe
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Jose G. Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Nicholas T. Woods
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; (E.J.C.); (H.C.-H.L.); (F.Q.)
- Correspondence:
| |
Collapse
|
3
|
Kar N, Gupta D, Bellare J. Ethanol affects fibroblast behavior differentially at low and high doses: A comprehensive, dose-response evaluation. Toxicol Rep 2021; 8:1054-1066. [PMID: 34307054 PMCID: PMC8296147 DOI: 10.1016/j.toxrep.2021.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Ethanol exhibits hormetic response in terms of cellular activity. 1 % (v/v) ethanol concentration demarcates non-toxic and toxic range. Different types of mitochondrial impairment identified at high dose. Cellular toxicity is accompanied by an increase in cellular stiffness. Dose-dependent cellular stress response to toxicity is observed.
This study aims to develop a comprehensive understanding of effects of low and high doses of ethanol on cellular biochemistry and morphology. Here, fibroblast cells are exposed to ethanol of varied concentrations [0.005−10 % (v/v)] to investigate cellular activity, cytoskeletal organization, cellular stiffness, mitochondrial structure, and real-time behavior. Our results indicate a sharp difference in cellular behavior above and below 1 % ethanol concentration. A two-fold increase in MTT activity at low doses is observed, whereas at high doses it decreases. This increased activity at low doses does not involve cell proliferation changes or mitochondrial impairment, as seen at higher doses. Moreover, the study identifies different types of mitochondrial structure impairment at high doses. Morphologically, cells demonstrate a gradual change in cytoskeletal organization and an increase in cell stiffness with increase in doses. Cells exhibit adaptation to sub-toxic doses of ethanol, wherein recovery from ethanol-induced stress is a dose-dependent phenomenon. Cell survival at low doses and toxicity at higher doses are attributed to mild and strong oxidative stress, respectively. Overall, the study provides a comprehensive understanding of dose-dependent effects of ethanol, manifesting its biphasic or hormetic response, biochemically, at low doses and illustrating its toxicological effects at higher doses.
Collapse
Affiliation(s)
- Neelakshi Kar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Deepak Gupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India.,Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400076, India
| |
Collapse
|
4
|
El-Bayoumy K, Christensen ND, Hu J, Viscidi R, Stairs DB, Walter V, Chen KM, Sun YW, Muscat JE, Richie JP. An Integrated Approach for Preventing Oral Cavity and Oropharyngeal Cancers: Two Etiologies with Distinct and Shared Mechanisms of Carcinogenesis. Cancer Prev Res (Phila) 2020; 13:649-660. [PMID: 32434808 DOI: 10.1158/1940-6207.capr-20-0096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) was the 7th most common malignancy worldwide in 2018 and despite therapeutic advances, the overall survival rate for oral squamous cell carcinoma (OSCC; ∼50%) has remained unchanged for decades. The most common types are OSCC and oropharyngeal squamous cell carcinoma (OPSCC, survival rate ∼85%). Tobacco smoking is a major risk factor of HNSCC. In the developed world, the incidence of OSCC is declining as a result of tobacco cessation programs. However, OPSCC, which is also linked to human papillomavirus (HPV) infection, is on the rise and now ranks as the most common HPV-related cancer. The current state of knowledge indicates that HPV-associated disease differs substantially from other types of HNSCC and distinct biological differences between HPV-positive and HPV-negative HNSCC have been identified. Although risk factors have been extensively discussed in the literature, there are multiple clinically relevant questions that remain unanswered and even unexplored. Moreover, existing approaches (e.g., tobacco cessation, vaccination, and chemoprevention) to manage and control this disease remain a challenge. Thus, in this review, we discuss potential future basic research that can assist in a better understanding of disease pathogenesis which may lead to novel and more effective preventive strategies for OSCC and OPSCC.
Collapse
Affiliation(s)
- Karam El-Bayoumy
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.
| | - Neil D Christensen
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.,Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.,Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Raphael Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Douglas B Stairs
- Department of Pathology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Vonn Walter
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania.,Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Kun-Ming Chen
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Yuan-Wan Sun
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - Joshua E Muscat
- Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| | - John P Richie
- Department of Public Health Sciences, Pennsylvania State University, College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
5
|
Signor S, Nuzhdin S. Dynamic changes in gene expression and alternative splicing mediate the response to acute alcohol exposure in Drosophila melanogaster. Heredity (Edinb) 2018; 121:342-360. [PMID: 30143789 PMCID: PMC6133934 DOI: 10.1038/s41437-018-0136-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/21/2018] [Accepted: 07/19/2018] [Indexed: 12/18/2022] Open
Abstract
Environmental changes typically cause rapid gene expression responses in the exposed organisms, including changes in the representation of gene isoforms with different functions or properties. Identifying the genes that respond to environmental change, including in genotype-specific ways, is an important step in treating the undesirable physiological effects of stress, such as exposure to toxins or ethanol. Ethanol is a unique environmental stress in that chronic exposure results in permanent physiological changes and the development of alcohol use disorders. Drosophila is a classic model for deciphering the mechanisms of the response to alcohol exposure, as it meets the criteria for the development of alcohol use disorders, and has similar physiological underpinnings with vertebrates. Because many studies on the response to ethanol have relied on a priori candidate genes, broad surveys of gene expression and splicing are required and have been investigated here. Further, we expose Drosophila to ethanol in an environment that is genetically, socially, and ecologically relevant. Both expression and splicing differences, inasmuch as they can be decomposed, contribute to the response to ethanol in Drosophila melanogaster. However, we find that while D. melanogaster responds to ethanol, there is very little genetic variation in how it responds to ethanol. In addition, the response to alcohol over time is dynamic, suggesting that incorporating time into studies on the response to the environment is important.
Collapse
Affiliation(s)
- Sarah Signor
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | - Sergey Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
McCarthy ET, Zhou J, Eckert R, Genochio D, Sharma R, Oni O, De A, Srivastava T, Sharma R, Savin VJ, Sharma M. Ethanol at low concentrations protects glomerular podocytes through alcohol dehydrogenase and 20-HETE. Prostaglandins Other Lipid Mediat 2014; 116-117:88-98. [PMID: 25447342 DOI: 10.1016/j.prostaglandins.2014.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 12/22/2022]
Abstract
Clinical studies suggest cardiovascular and renal benefits of ingesting small amounts of ethanol. Effects of ethanol, role of alcohol dehydrogenase (ADH) or of 20-hydroxyeicosatetraenoic acid (20-HETE) in podocytes of the glomerular filtration barrier have not been reported. We found that mouse podocytes at baseline generate 20-HETE and express ADH but not CYP2e1. Ethanol at high concentrations altered the actin cytoskeleton, induced CYP2e1, increased superoxide production and inhibited ADH gene expression. Ethanol at low concentrations upregulated the expression of ADH and CYP4a12a. 20-HETE, an arachidonic acid metabolite generated by CYP4a12a, blocked the ethanol-induced cytoskeletal derangement and superoxide generation. Ethanol at high concentration or ADH inhibitor increased glomerular albumin permeability in vitro. 20-HETE and its metabolite produced by ADH activity, 20-carboxy-arachidonic acid, protected the glomerular permeability barrier against an ADH inhibitor, puromycin or FSGS permeability factor. We conclude that ADH activity is required for glomerular function, 20-HETE is a physiological substrate of ADH in podocytes and that podocytes are useful biosensors to understand glomeruloprotective effects of ethanol.
Collapse
Affiliation(s)
- Ellen T McCarthy
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jianping Zhou
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Ryan Eckert
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - David Genochio
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Rishi Sharma
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Olurinde Oni
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Alok De
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Tarak Srivastava
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States; Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO, United States
| | - Ram Sharma
- Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Virginia J Savin
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States; Research Service, Kansas City VA Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States; Research Service, Kansas City VA Medical Center, Kansas City, MO, United States.
| |
Collapse
|
7
|
Tong J, Wang Y, Chang B, Zhang D, Liu P, Wang B. Activation of RhoA in alcohol-induced intestinal barrier dysfunction. Inflammation 2014; 36:750-8. [PMID: 23361851 DOI: 10.1007/s10753-013-9601-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ras homolog gene family, member A (RhoA) is a small GTPase protein known to regulate multiple cellular processes. In the present study, we used both an alcohol-fed mouse model and an alcohol-treated Caco-2 intestinal epithelial cell monolayer in vitro model to investigate whether RhoA is involved in alcohol-induced intestinal barrier dysfunction as well as the underlying mechanisms. We found that chronic alcohol exposure significantly increased both intestinal RhoA mRNA and protein levels in mice and alcohol treatment also increased RhoA activity in Caco-2 cells. The alcohol-induced elevation in RhoA activity was accompanied by an increase in inducible nitric oxide synthase (iNOS) expression and prevented by N⁶-(1-iminoethyl)-L-lysine dihydrochloride (L-NIL) or small interfering RNA (siRNA) specific for iNOS. Furthermore, alcohol treatment with Caco-2 cells resulted in a significant decrease in the epithelial transepithelial electrical resistance (TEER) value, which was attenuated by knockdown of RhoA. Taken together, our findings suggest that iNOS-mediated activation of RhoA appears to be one of the important mechanisms contributing to the deleterious effects of alcohol on intestinal barrier function.
Collapse
Affiliation(s)
- Jing Tong
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang 110001, China
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This review presents recent advancements in the mechanisms by which integrated signaling mechanisms elicit and regulate pancreatic endocrine and exocrine secretion. RECENT FINDINGS Cholecystokinin (CCK) can stimulate exocrine secretion by acting directly on neurons located in the dorsal motor of the vagus or indirectly by acting on pancreatic stellate cells. The importance of small GTPases such as RhoA and Rac1 in CCK-induced pancreatic secretion is also described. Ghrelin attenuates insulin secretion through the AMP-activated protein kinase-uncoupling protein 2 pathway. An exciting new report describes that leptin can influence insulin release by osteoclastin, a hormone produced by osteoblasts. This finding adds a new layer of complexity in the regulation of insulin secretion with implications for glucose and energy homeostasis. In addition, leptin also mediates insulin secretion through the sympathetic system and via pro-opiomelanocortin neurons, which could serve as the cross-road for leptin and melanocortin signaling pathways. Recent reports on the action of numerous other regulators such as atrial natriuretic peptide, neurotensin, and orexin B are also discussed. SUMMARY The pancreas is an extremely complex gland. Elucidation of the secretory and regulatory pathways that control pancreatic secretion will aid in the development of treatment for diseases such as pancreatitis, diabetes, and obesity.
Collapse
|