1
|
Ren FJ, Cai XY, Yao Y, Fang GY. JunB: a paradigm for Jun family in immune response and cancer. Front Cell Infect Microbiol 2023; 13:1222265. [PMID: 37731821 PMCID: PMC10507257 DOI: 10.3389/fcimb.2023.1222265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Jun B proto-oncogene (JunB) is a crucial member of dimeric activator protein-1 (AP-1) complex, which plays a significant role in various physiological processes, such as placental formation, cardiovascular development, myelopoiesis, angiogenesis, endochondral ossification and epidermis tissue homeostasis. Additionally, it has been reported that JunB has great regulatory functions in innate and adaptive immune responses by regulating the differentiation and cytokine secretion of immune cells including T cells, dendritic cells and macrophages, while also facilitating the effector of neutrophils and natural killer cells. Furthermore, a growing body of studies have shown that JunB is involved in tumorigenesis through regulating cell proliferation, differentiation, senescence and metastasis, particularly affecting the tumor microenvironment through transcriptional promotion or suppression of oncogenes in tumor cells or immune cells. This review summarizes the physiological function of JunB, its immune regulatory function, and its contribution to tumorigenesis, especially focusing on its regulatory mechanisms within tumor-associated immune processes.
Collapse
Affiliation(s)
- Fu-jia Ren
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| | - Xiao-yu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Wu J, Ma S, Hotz-Wagenblatt A, Angel P, Mohr K, Schlimbach T, Schmitt M, Cui G. Regulatory T cells sense effector T-cell activation through synchronized JunB expression. FEBS Lett 2019; 593:1020-1029. [PMID: 31017652 DOI: 10.1002/1873-3468.13393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023]
Abstract
To maintain immune tolerance, effector T-cell (Teff) responses must be checked by the regulatory T cells (Tregs) in time. It remains incompletely understood how Tregs sense real-time Teff activation. Here, we report that the AP-1 transcription factor JunB, which is induced in Teffs upon T-cell receptor (TCR) activation, is also increased in Tregs by TCR stimuli. Treg-specific deletion of Junb impairs Treg identity, causes uncontrolled inflammatory cytokine production by Teffs and leads to the T-box transcription factor T-bet-dependent spontaneous inflammation. Furthermore, JunB deficiency in Tregs unleashes antitumor Teff responses in a mouse model of melanoma. We conclude that JunB alarms Tregs of the emerging Teff activation and synchronizes immune regulation with the immune reaction in autoimmunity and cancer.
Collapse
Affiliation(s)
- Jingxia Wu
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sicong Ma
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty Heidelberg, Heidelberg University, Germany
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Angel
- Division Signal Transduction and Growth Control (A100), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Mohr
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilo Schlimbach
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Schmitt
- Medical Faculty Heidelberg, Heidelberg University, Germany.,Internal Medicine V, University Heidelberg Hospital, Germany
| | - Guoliang Cui
- T Cell Metabolism Group (D140), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Germany
| |
Collapse
|
3
|
Yoshitomi Y, Ikeda T, Saito H, Yoshitake Y, Ishigaki Y, Hatta T, Kato N, Yonekura H. JunB regulates angiogenesis and neurovascular parallel alignment in mouse embryonic skin. J Cell Sci 2017; 130:916-926. [PMID: 28096474 DOI: 10.1242/jcs.196303] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
Abstract
Blood vessels and nerve fibers are often closely arranged in parallel throughout the body. Therefore, neurovascular interactions have been suggested to be important for the development of vascular networks. However, the molecular mechanisms and genes regulating this process remain unclear. In the present study, we investigated the genes that are activated in endothelial cells (ECs) following interactions with neurons during vascular development. Microarray analyses of human primary microvascular ECs co-cultured with mouse primary dorsal root ganglion cells showed that JunB is strongly upregulated in ECs by neurovascular interactions. Furthermore, the forced expression of JunB in ECs stimulated a tip-like cell formation and angiogenesis in vitro and induced vascular endothelial growth factor A (VEGFA) and the pro-angiogenic integrin subunit ITGB3 expression. Moreover, in vivo knockdown of JunB in ECs from developing mouse limb skin considerably decreased the parallel alignments of blood vessels and nerve fibers. Taken together, the present data demonstrates for the first time that JunB plays an important role in the formation of embryonic vascular networks. These results contribute to the molecular understanding of neurovascular interactions during embryonic vascular development.
Collapse
Affiliation(s)
- Yasuo Yoshitomi
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Takayuki Ikeda
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Hidehito Saito
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Yoshino Yoshitake
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| | - Hideto Yonekura
- Department of Biochemistry, Kanazawa Medical University School of Medicine, 1-1 Daigaku, Uchinada, Kahoku-gun, Ishikawa 920-0293, Japan
| |
Collapse
|
4
|
Pan W, Zhang AQ, Gu W, Gao JW, Du DY, Zhang LY, Zeng L, Du J, Wang HY, Jiang JX. Identification of haplotype tag single nucleotide polymorphisms within the nuclear factor-κB family genes and their clinical relevance in patients with major trauma. Crit Care 2015; 19:95. [PMID: 25880845 PMCID: PMC4404128 DOI: 10.1186/s13054-015-0836-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/23/2015] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Nuclear factor-κB (NF-κB) family plays an important role in the development of sepsis in critically ill patients. Although several single nucleotide polymorphisms (SNPs) have been identified in the NF-κB family genes, only a few SNPs have been studied. METHODS A total of 753 patients with major blunt trauma were included in this study. Tag SNPs (tSNPs) were selected from the NF-κB family genes (NFKB1, NFKB2, RELA, RELB and REL) through construction of haplotype blocks. The SNPs selected from genes within the canonical NF-κB pathway (including NFKB1, RELA and REL), which played a critical role in innate immune responses were genotyped using pyrosequencing method and analyzed in relation to the risk of development of sepsis and multiple organ dysfunction (MOD) syndrome. Moreover, the rs842647 polymorphism was analyzed in relation to tumor necrosis factor α (TNF-α) production by peripheral blood leukocytes in response to bacterial lipoprotein stimulation. RESULTS Eight SNPs (rs28362491, rs3774932, rs4648068, rs7119750, rs4803789, rs12609547, rs1560725 and rs842647) were selected from the NF-κB family genes. All of them were shown to be high-frequency SNPs in this study cohort. Four SNPs (rs28362491, rs4648068, rs7119750 and rs842647) within the canonical NF-κB pathway were genotyped, and rs842647 was associated with sepsis morbidity rate and MOD scores. An association was also observed between the rs842647 A allele and lower TNF-α production. CONCLUSIONS rs842647 polymorphism might be used as relevant risk estimate for the development of sepsis and MOD syndrome in patients with major trauma.
Collapse
Affiliation(s)
- Wei Pan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Gaotanyan Street, Chongqing, 400038, China.
| | - An Qiang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Gaotanyan Street, Chongqing, 400038, China.
| | - Wei Gu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Gaotanyan Street, Chongqing, 400038, China.
| | - Jun Wei Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Gaotanyan Street, Chongqing, 400038, China.
| | - Ding Yuan Du
- Chongqing Emergency Medical Center, Jiankang Road, Chongqing, 400042, China.
| | - Lian Yang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Gaotanyan Street, Chongqing, 400038, China.
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Gaotanyan Street, Chongqing, 400038, China.
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Gaotanyan Street, Chongqing, 400038, China.
| | - Hai Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Gaotanyan Street, Chongqing, 400038, China.
| | - Jian Xin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Gaotanyan Street, Chongqing, 400038, China.
| |
Collapse
|
5
|
Vafadari R, Kraaijeveld R, Weimar W, Baan CC. Tacrolimus inhibits NF-κB activation in peripheral human T cells. PLoS One 2013; 8:e60784. [PMID: 23573283 PMCID: PMC3613409 DOI: 10.1371/journal.pone.0060784] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/02/2013] [Indexed: 12/31/2022] Open
Abstract
The calcineurin inhibitor, tacrolimus (TAC), inhibits the protein phosphatase activity of calcineurin, leading to suppression of the nuclear translocation of NFAT and inhibition of T cell activation. Apart from NFAT also the transcription factor NF-κB plays a key functional role in T cell activation. Therefore, blockade of the NF-κB activation cascade by immunosuppressive drugs prevents immune activation. Here we studied whether TAC blocks NF-κB activation in peripheral human T cells. After anti-CD3/CD28-activation of T cells from healthy volunteers, NF-κB (p65) phosphorylation was measured by flow cytometry in CD3+ T cells, CD4+ helper T cells and CD8+ cytotoxic T cells in the absence and presence of TAC 10 ng/mL, sotrastaurin 500 nM (positive control) and mycophenolic acid 10 µg/mL (negative control; n = 6). NF-κB transcriptional activity was measured by ELISA and intracellular TNFα protein, a downstream target, was measured by flow cytometry to assess the functional consequences of NF-κB blockade. Anti-CD3/28-activation induced NF-κB phosphorylation in CD3+ T cells, CD4+ T cells and CD8+ T cells by 34% (mean), 38% and 30% resp. (p<0.01). Sotrastaurin inhibited NF-κB activation in the respective T cell subsets by 93%, 95% and 86% (p<0.01 vs. no drug), while mycophenolic acid did not affect this activation pathway. Surprisingly, TAC also inhibited NF-κB phosphorylation, by 55% (p<0.01) in CD3+ T cells, by 56% (p<0.01) in CD4+ T cells and by 51% in CD8+ T cells (p<0.01). In addition, TAC suppressed NF-κB DNA binding capacity by 55% (p<0.05) in CD3+ T cells and TNFα protein expression was inhibited in CD3+ T cells, CD4+ T cells and CD8+ T cells by 76%, 71% and 93% resp. (p<0.01 vs. no drug), confirming impaired NF-κB signaling. This study shows the suppressive effect of TAC on NF-κB signaling in peripheral human T cell subsets, measured at three specific positions in the NF-κB activation cascade.
Collapse
Affiliation(s)
- Ramin Vafadari
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rens Kraaijeveld
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem Weimar
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Gilmore TD, Gerondakis S. The c-Rel Transcription Factor in Development and Disease. Genes Cancer 2012; 2:695-711. [PMID: 22207895 DOI: 10.1177/1947601911421925] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/08/2011] [Indexed: 12/21/2022] Open
Abstract
c-Rel is a member of the nuclear factor κB (NF-κB) transcription factor family. Unlike other NF-κB proteins that are expressed in a variety of cell types, high levels of c-Rel expression are found primarily in B and T cells, with many c-Rel target genes involved in lymphoid cell growth and survival. In addition to c-Rel playing a major role in mammalian B and T cell function, the human c-rel gene (REL) is a susceptibility locus for certain autoimmune diseases such as arthritis, psoriasis, and celiac disease. The REL locus is also frequently altered (amplified, mutated, rearranged), and expression of REL is increased in a variety of B and T cell malignancies and, to a lesser extent, in other cancer types. Thus, agents that modulate REL activity may have therapeutic benefits for certain human cancers and chronic inflammatory diseases.
Collapse
|
7
|
Fullard N, Wilson CL, Oakley F. Roles of c-Rel signalling in inflammation and disease. Int J Biochem Cell Biol 2012; 44:851-60. [PMID: 22405852 DOI: 10.1016/j.biocel.2012.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/22/2012] [Accepted: 02/24/2012] [Indexed: 12/13/2022]
Abstract
Nuclear factor kappa B (NFκB) is a dimeric transcription factor comprised of five family members RelA (p65), RelB, c-Rel, p50 and p52. NFκB signalling is complex and controls a myriad of normal cellular functions. However, constitutive or aberrant activation of this pathway is associated with disease progression and cancer in multiple organs. The diverse array of biological responses is modulated by many factors, including the activating stimulus, recruitment of co-regulatory molecules, consensus DNA binding sequence, dimer composition and post-translational modifications. Each subunit has very different biological functions and in the context of disease the individual subunits forming the NFκB dimer can have a profound effect, causing a shift in the balance from normal to pathogenic signalling. Here we discuss the role of c-Rel dependant signalling in normal physiology and its contribution to disease both inside and outside of the immune system.
Collapse
Affiliation(s)
- Nicola Fullard
- Fibrosis Laboratory, Liver Group, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | | | | |
Collapse
|
8
|
Izzo V, Pinelli M, Tinto N, Esposito MV, Cola A, Sperandeo MP, Tucci F, Cocozza S, Greco L, Sacchetti L. Improving the estimation of celiac disease sibling risk by non-HLA genes. PLoS One 2011; 6:e26920. [PMID: 22087237 PMCID: PMC3210127 DOI: 10.1371/journal.pone.0026920] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/06/2011] [Indexed: 02/06/2023] Open
Abstract
Celiac Disease (CD) is a polygenic trait, and HLA genes explain less than half of the genetic variation. Through large GWAs more than 40 associated non-HLA genes were identified, but they give a small contribution to the heritability of the disease. The aim of this study is to improve the estimate of the CD risk in siblings, by adding to HLA a small set of non-HLA genes. One-hundred fifty-seven Italian families with a confirmed CD case and at least one other sib and both parents were recruited. Among 249 sibs, 29 developed CD in a 6 year follow-up period. All individuals were typed for HLA and 10 SNPs in non-HLA genes: CCR1/CCR3 (rs6441961), IL12A/SCHIP1 and IL12A (rs17810546 and rs9811792), TAGAP (rs1738074), RGS1 (rs2816316), LPP (rs1464510), OLIG3 (rs2327832), REL (rs842647), IL2/IL21 (rs6822844), SH2B3 (rs3184504). Three associated SNPs (in LPP, REL, and RGS1 genes) were identified through the Transmission Disequilibrium Test and a Bayesian approach was used to assign a score (BS) to each detected HLA+SNPs genotype combination. We then classified CD sibs as at low or at high risk if their BS was respectively < or ≥ median BS value within each HLA risk group. A larger number (72%) of CD sibs showed a BS ≥ the median value and had a more than two fold higher OR than CD sibs with a BS value < the median (O.R = 2.53, p = 0.047). Our HLA+SNPs genotype classification, showed both a higher predictive negative value (95% vs 91%) and diagnostic sensitivity (79% vs 45%) than the HLA only. In conclusion, the estimate of the CD risk by HLA+SNPs approach, even if not applicable to prevention, could be a precious tool to improve the prediction of the disease in a cohort of first degree relatives, particularly in the low HLA risk groups.
Collapse
Affiliation(s)
- Valentina Izzo
- Department of Pediatrics, University of Naples Federico II, Naples, Italy
- European Laboratory for Food Induced Disease, University of Naples “Federico II”, Naples, Italy
| | - Michele Pinelli
- Department of Cellular and Molecular Biology and Pathology “L. Califano”, University of Naples “Federico II”, Naples, Italy
| | - Nadia Tinto
- CEINGE Advanced Biotechnology, S.c.a.r.l., Naples, Italy
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Maria Valeria Esposito
- CEINGE Advanced Biotechnology, S.c.a.r.l., Naples, Italy
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Arturo Cola
- CEINGE Advanced Biotechnology, S.c.a.r.l., Naples, Italy
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Maria Pia Sperandeo
- Department of Pediatrics, University of Naples Federico II, Naples, Italy
- European Laboratory for Food Induced Disease, University of Naples “Federico II”, Naples, Italy
| | - Francesca Tucci
- Department of Pediatrics, University of Naples Federico II, Naples, Italy
- European Laboratory for Food Induced Disease, University of Naples “Federico II”, Naples, Italy
| | - Sergio Cocozza
- Department of Cellular and Molecular Biology and Pathology “L. Califano”, University of Naples “Federico II”, Naples, Italy
| | - Luigi Greco
- Department of Pediatrics, University of Naples Federico II, Naples, Italy
- European Laboratory for Food Induced Disease, University of Naples “Federico II”, Naples, Italy
- * E-mail:
| | - Lucia Sacchetti
- CEINGE Advanced Biotechnology, S.c.a.r.l., Naples, Italy
- Department of Biochemistry and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
9
|
Molecular mechanisms underlying the regulation and functional plasticity of FOXP3(+) regulatory T cells. Genes Immun 2011; 13:1-13. [PMID: 22048454 DOI: 10.1038/gene.2011.77] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD4(+) CD25(+) regulatory T (Treg) cells engage in the maintenance of immunological self-tolerance and homeostasis by limiting aberrant or excessive inflammation. The transcription factor forkhead box P3 (FOXP3) is critical for the development and function of Treg cells. The differentiation of the Treg cell lineage is not terminal, as developmental and functional plasticity occur through the sensing of inflammatory signals in the periphery. Here, we review the recent progress in our understanding of the molecular mechanisms underlying the regulation and functional plasticity of CD4(+) CD25(+) FOXP3(+) Treg cells, through the perturbation of FOXP3 and its complex at a transcriptional, translational and post-translational level.
Collapse
|