1
|
Guazzelli A, Meysami P, Bakker E, Bonanni E, Demonacos C, Krstic-Demonacos M, Mutti L. What can independent research for mesothelioma achieve to treat this orphan disease? Expert Opin Investig Drugs 2019; 28:719-732. [PMID: 31262194 DOI: 10.1080/13543784.2019.1638363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Malignant pleural mesothelioma (MPM) is a rare neoplasm with a poor prognosis, as current therapies are ineffective. Despite the increased understanding of the molecular biology of mesothelioma, there is still a lack of drugs that dramatically enhance patient survival. Area Covered: This review discusses recent and complete clinical trials supported by the NIH, other U.S. Federal agencies, universities and organizations found on clinicaltrials.gov. Firstly, chemotherapy-based trials are described, followed by immunotherapy and multitargeted therapy. Then we introduce drug repositioning and the use of drug docking as tools to find new interesting molecules. Finally, we highlight potential molecular pathways that may play a role in mesothelioma biology and therapy. Expert Opinion: Numerous biases are present in the clinical trials due to a restricted number of cases, inappropriate endpoints and inaccurate stratification of patients which delay the finding of a treatment for MPM. The most crucial issue of independent research for MPM is the lack of more substantive funding to translate these findings to the clinical setting. However, this approach is not necessarily scientific given the low mutational load of mesothelioma relative to other cancers, and therefore patients need a more solid rationale to have a good chance of successful treatment.
Collapse
Affiliation(s)
- Alice Guazzelli
- a School of Environment and Life Sciences, University of Salford , Salford , UK
| | - Parisa Meysami
- a School of Environment and Life Sciences, University of Salford , Salford , UK
| | - Emyr Bakker
- b School of Medicine, University of Central Lancashire , Preston , UK
| | | | - Constantinos Demonacos
- d Faculty of Biology, Medicine and Health, School of Health Sciences, University of Manchester , Manchester , UK
| | | | - Luciano Mutti
- e Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , Philadelphia , PA , USA
| |
Collapse
|
2
|
Boyer A, Pasquier E, Tomasini P, Ciccolini J, Greillier L, Andre N, Barlesi F, Mascaux C. Drug repurposing in malignant pleural mesothelioma: a breath of fresh air? Eur Respir Rev 2018; 27:170098. [PMID: 29540495 PMCID: PMC9488560 DOI: 10.1183/16000617.0098-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/13/2018] [Indexed: 01/17/2023] Open
Abstract
Drug repurposing is the use of known drugs for new indications. Malignant pleural mesothelioma (MPM) is a rare cancer with a poor prognosis. So far, few treatments have been approved in this disease. However, its incidence is expected to increase significantly, particularly in developing countries. Consequently, drug repurposing appears as an attractive strategy for drug development in MPM, since the known pharmacology and safety profile based on previous approvals of repurposed drugs allows for faster time-to-market for patients and lower treatment cost. This is critical in low- and middle-income countries where access to expensive drugs is limited. This review assesses the published preclinical and clinical data about drug repurposing in MPM.In this review, we identified 11 therapeutic classes that could be repositioned in mesothelioma. Most of these treatments have been evaluated in vitro, half have been evaluated in vivo in animal models of MPM and only three (i.e. valproate, thalidomide and zoledronic acid) have been investigated in clinical trials, with limited benefits so far. Efforts could be coordinated to pursue further investigations and test promising drugs identified in preclinical experiments in appropriately designed clinical trials.
Collapse
Affiliation(s)
- Arnaud Boyer
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Multidisciplinary Oncology and Therapeutic Innovations Dept, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| | - Eddy Pasquier
- Aix Marseille University, Assistance Publique des Hôpitaux de Marseille, Dept of Haematology and Paediatric Oncology, Marseille, France
| | - Pascale Tomasini
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Multidisciplinary Oncology and Therapeutic Innovations Dept, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| | - Joseph Ciccolini
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| | - Laurent Greillier
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Multidisciplinary Oncology and Therapeutic Innovations Dept, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| | - Nicolas Andre
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| | - Fabrice Barlesi
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Multidisciplinary Oncology and Therapeutic Innovations Dept, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| | - Celine Mascaux
- Aix Marseille University, Assistance Publique Hôpitaux de Marseille, Multidisciplinary Oncology and Therapeutic Innovations Dept, Marseille, France
- Centre de Recherche en Cancérologie de Marseille (CRCM, Marseille Cancer Research Centre), Inserm UMR1068, CNRS UMR7258 and Aix-Marseille University UM105, Marseille, France
| |
Collapse
|
3
|
NF2/Merlin Inactivation and Potential Therapeutic Targets in Mesothelioma. Int J Mol Sci 2018; 19:ijms19040988. [PMID: 29587439 PMCID: PMC5979333 DOI: 10.3390/ijms19040988] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
The neurofibromatosis type 2 (NF2) gene encodes merlin, a tumor suppressor protein frequently inactivated in schwannoma, meningioma, and malignant mesothelioma (MM). The sequence of merlin is similar to that of ezrin/radixin/moesin (ERM) proteins which crosslink actin with the plasma membrane, suggesting that merlin plays a role in transducing extracellular signals to the actin cytoskeleton. Merlin adopts a distinct closed conformation defined by specific intramolecular interactions and regulates diverse cellular events such as transcription, translation, ubiquitination, and miRNA biosynthesis, many of which are mediated through Hippo and mTOR signaling, which are known to be closely involved in cancer development. MM is a very aggressive tumor associated with asbestos exposure, and genetic alterations in NF2 that abrogate merlin’s functional activity are found in about 40% of MMs, indicating the importance of NF2 inactivation in MM development and progression. In this review, we summarize the current knowledge of molecular events triggered by NF2/merlin inactivation, which lead to the development of mesothelioma and other cancers, and discuss potential therapeutic targets in merlin-deficient mesotheliomas.
Collapse
|
4
|
Valproic Acid Induces Endocytosis-Mediated Doxorubicin Internalization and Shows Synergistic Cytotoxic Effects in Hepatocellular Carcinoma Cells. Int J Mol Sci 2017; 18:ijms18051048. [PMID: 28498322 PMCID: PMC5454960 DOI: 10.3390/ijms18051048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
Abstract
Valproic acid (VPA), a well-known histone deacetylase (HDAC) inhibitor, is used as an anti-cancer drug for various cancers, but the synergistic anti-cancer effect of VPA and doxorubicin (DOX) combination treatment and its potential underlying mechanism in hepatocellular carcinoma (HCC) remain to be elucidated. Here, we evaluate the mono- and combination-therapy effects of VPA and DOX in HCC and identify a specific and efficient, synergistic anti-proliferative effect of the VPA and DOX combination in HCC cells, especially HepG2 cells; this effect was not apparent in MIHA cells, a normal hepatocyte cell line. The calculation of the coefficient of drug interaction confirmed the significant synergistic effect of the combination treatment. Concurrently, the synergistic apoptotic cell death caused by the VPA and DOX combination treatment was confirmed by Hoechst nuclear staining and Western blot analysis of caspase-3 and poly (ADP-ribose) polymerase (PARP) activation. Co-treatment with VPA and DOX enhanced reactive oxygen species (ROS) generation and autophagy, which were clearly attenuated by ROS and autophagy inhibitors, respectively. Furthermore, as an indication of the mechanism underlying the synergistic effect, we observed that DOX internalization, which was induced in the VPA and DOX combination-treated group, occurred via by the caveolae-mediated endocytosis pathway. Taken together, our study uncovered the potential effect of the VPA and DOX combination treatment with regard to cell death, including induction of cellular ROS, autophagy, and the caveolae-mediated endocytosis pathway. Therefore, these results present novel implications in drug delivery research for the treatment of HCC.
Collapse
|
5
|
Vandermeers F, Neelature Sriramareddy S, Costa C, Hubaux R, Cosse JP, Willems L. The role of epigenetics in malignant pleural mesothelioma. Lung Cancer 2013; 81:311-318. [PMID: 23790315 DOI: 10.1016/j.lungcan.2013.05.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/18/2013] [Accepted: 05/22/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Fabian Vandermeers
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Sathya Neelature Sriramareddy
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Chrisostome Costa
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Roland Hubaux
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Jean-Philippe Cosse
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - Luc Willems
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium.
| |
Collapse
|
6
|
Li X, Zhu Y, He H, Lou L, Ye W, Chen Y, Wang J. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells. Biochem Biophys Res Commun 2013; 436:259-64. [PMID: 23726914 DOI: 10.1016/j.bbrc.2013.05.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 01/30/2023]
Abstract
Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines' significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000, China
| | | | | | | | | | | | | |
Collapse
|