1
|
He W, Gasmi-Seabrook GMC, Ikura M, Lee JE, Ohh M. Time-resolved NMR detection of prolyl-hydroxylation in intrinsically disordered region of HIF-1α. Proc Natl Acad Sci U S A 2024; 121:e2408104121. [PMID: 39231207 PMCID: PMC11406255 DOI: 10.1073/pnas.2408104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/23/2024] [Indexed: 09/06/2024] Open
Abstract
Prolyl-hydroxylation is an oxygen-dependent posttranslational modification (PTM) that is known to regulate fibril formation of collagenous proteins and modulate cellular expression of hypoxia-inducible factor (HIF) α subunits. However, our understanding of this important but relatively rare PTM has remained incomplete due to the lack of biophysical methodologies that can directly measure multiple prolyl-hydroxylation events within intrinsically disordered proteins. Here, we describe a real-time 13C-direct detection NMR-based assay for studying the hydroxylation of two evolutionarily conserved prolines (P402 and P564) simultaneously in the intrinsically disordered oxygen-dependent degradation domain of hypoxic-inducible factor 1α by exploiting the "proton-less" nature of prolines. We show unambiguously that P564 is rapidly hydroxylated in a time-resolved manner while P402 hydroxylation lags significantly behind that of P564. The differential hydroxylation rate was negligibly influenced by the binding affinity to prolyl-hydroxylase enzyme, but rather by the surrounding amino acid composition, particularly the conserved tyrosine residue at the +1 position to P564. These findings support the unanticipated notion that the evolutionarily conserved P402 seemingly has a minimal impact in normal oxygen-sensing pathway.
Collapse
Affiliation(s)
- Wenguang He
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5G 1M1, Canada
| | | | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Michael Ohh
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5G 1M1, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ONM5S 1A8, Canada
| |
Collapse
|
2
|
Prieto VA, Namitz KEW, Showalter SA. Transient Electrostatic Interactions between Fcp1 and Rap74 Bias the Conformational Ensemble of the Complex with Minimal Impact on Binding Affinity. J Phys Chem B 2021; 125:10917-10927. [PMID: 34550709 DOI: 10.1021/acs.jpcb.1c05131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intrinsically disordered protein (IDP) sequences often contain a high proportion of charged residues in conjunction with their high degree of hydrophilicity and solvation. For high net charge IDPs, long-range electrostatic interactions are thought to play a role in modulating the strength or kinetics of protein-protein interactions. In this work, we examined intramolecular interactions mediated by charged regions of a model IDP, the C-terminal tail of the phosphatase Fcp1. Specifically, this work focuses on intermolecular interactions between acidic and basic patches in the primary structure of Fcp1 and their contributions to binding its predominantly basic partner, the winged helix domain of Rap74. We observe both intramolecular and intermolecular interactions through paramagnetic relaxation enhancement (PRE) consistent with oppositely charged regions associating with one another, both in unbound Fcp1 and in the Fcp1-Rap74 complex. Formation of this complex is strongly driven by hydrophobic interactions in the minimal binding motif. Here, we test the hypothesis that charged residues in Fcp1 that flank the binding helix also contribute to the strength of binding. Charge inversion mutations in Fcp1 generally support this hypothesis, while PRE data suggest substitution of observed transient interactions in the unbound ensemble for similarly transient interactions with Rap74 in the complex.
Collapse
Affiliation(s)
- Victor A Prieto
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kevin E W Namitz
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Lupo BE, Chu P, Harms MJ, Morrison EA, Musselman CA. Evolutionary Conservation of Structural and Functional Coupling between the BRM AT-Hook and Bromodomain. J Mol Biol 2021; 433:166845. [PMID: 33539881 PMCID: PMC8184587 DOI: 10.1016/j.jmb.2021.166845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 01/13/2023]
Abstract
The BAF chromatin remodeling complex is critical for genome regulation. The central ATPase of BAF is either BRM or BRG1, both of which contain a C-terminal bromodomain, known to associate with acetylated lysines. We have recently demonstrated that in addition to acetyl-lysine binding, the BRG1/BRM bromodomain can associate with DNA through a lysine/arginine rich patch that is adjacent to the acetyl-lysine binding pocket. Flanking the bromodomain is an AT-hook separated by a short, proline-rich linker. We previously found that the AT-hook and bromodomain can associate with DNA in a multivalent manner. Here, we investigate the conservation of this composite module and find that the AT-hook, linker, and lysine/arginine rich bromodomain patch are ancient, conserved over ~1 billion years. We utilize extensive mutagenesis, NMR spectroscopy, and fluorescence anisotropy to dissect the contribution of each of these conserved elements in association of this module with DNA. Our results reveal a structural and functional coupling of the AT-hook and bromodomain mediated by the linker. The lysine/arginine rich patch on the bromodomain and the conserved elements of the AT-hook are critical for robust affinity for DNA, while the conserved elements of the linker are dispensable for overall DNA affinity but critical for maintaining the relative conformation of the AT-hook and bromodomain in binding to DNA. This supports that the coupled action of the AT-hook and bromodomain are important for BAF activity.
Collapse
Affiliation(s)
- Brianna E Lupo
- University of Iowa, Carver College of Medicine, Department of Biochemistry, Iowa City, IA 52242, United States
| | - Peirou Chu
- University of Iowa, Carver College of Medicine, Department of Biochemistry, Iowa City, IA 52242, United States
| | - Michael J Harms
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, United States; Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, United States
| | - Emma A Morrison
- University of Iowa, Carver College of Medicine, Department of Biochemistry, Iowa City, IA 52242, United States; Medical College of Wisconsin, Department of Biochemistry, Milwaukee, WI 53226, United States.
| | - Catherine A Musselman
- University of Iowa, Carver College of Medicine, Department of Biochemistry, Iowa City, IA 52242, United States; University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, United States.
| |
Collapse
|
4
|
Parico GCG, Perez I, Fribourgh JL, Hernandez BN, Lee HW, Partch CL. The human CRY1 tail controls circadian timing by regulating its association with CLOCK:BMAL1. Proc Natl Acad Sci U S A 2020; 117:27971-27979. [PMID: 33106415 PMCID: PMC7668087 DOI: 10.1073/pnas.1920653117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Circadian rhythms are generated by interlocked transcription-translation feedback loops that establish cell-autonomous biological timing of ∼24 h. Mutations in core clock genes that alter their stability or affinity for one another lead to changes in circadian period. The human CRY1Δ11 mutant lengthens circadian period to cause delayed sleep phase disorder (DSPD), characterized by a very late onset of sleep. CRY1 is a repressor that binds to the transcription factor CLOCK:BMAL1 to inhibit its activity and close the core feedback loop. We previously showed how the PHR (photolyase homology region) domain of CRY1 interacts with distinct sites on CLOCK and BMAL1 to sequester the transactivation domain from coactivators. However, the Δ11 variant alters an intrinsically disordered tail in CRY1 downstream of the PHR. We show here that the CRY1 tail, and in particular the region encoded by exon 11, modulates the affinity of the PHR domain for CLOCK:BMAL1. The PHR-binding epitope in exon 11 is necessary and sufficient to disrupt the interaction between CRY1 and the subunit CLOCK. Moreover, PHR-tail interactions are conserved in the paralog CRY2 and reduced when either CRY is bound to the circadian corepressor PERIOD2. Discovery of this autoregulatory role for the mammalian CRY1 tail and conservation of PHR-tail interactions in both mammalian cryptochromes highlights functional conservation with plant and insect cryptochromes, which also utilize PHR-tail interactions to reversibly control their activity.
Collapse
Affiliation(s)
- Gian Carlo G Parico
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Ivette Perez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Jennifer L Fribourgh
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Britney N Hernandez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064;
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
5
|
Cook EC, Sahu D, Bastidas M, Showalter SA. Solution Ensemble of the C-Terminal Domain from the Transcription Factor Pdx1 Resembles an Excluded Volume Polymer. J Phys Chem B 2018; 123:106-116. [PMID: 30525611 DOI: 10.1021/acs.jpcb.8b10051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic and duodenal homeobox 1 (Pdx1) is an essential pancreatic transcription factor. The C-terminal intrinsically disordered domain of Pdx1 (Pdx1-C) has a heavily biased amino acid composition; most notably, 18 of 83 residues are proline, including a hexaproline cluster near the middle of the chain. For these reasons, Pdx1-C is an attractive target for structure characterization, given the availability of suitable methods. To determine the solution ensembles of disordered proteins, we have developed a suite of 13C direct-detect NMR experiments that provide high spectral quality, even in the presence of strong proline enrichment. Here, we have extended our suite of NMR experiments to include four new pulse programs designed to record backbone residual dipolar couplings in a 13C,15N-CON detection format. Using our NMR strategy, in combination with small-angle X-ray scattering measurements and Monte Carlo simulations, we have determined that Pdx1-C is extended in solution, with a radius of gyration and internal scaling similar to that of an excluded volume polymer, and a subtle tendency toward a collapsed structure to the N-terminal side of the hexaproline sequence. This structure leaves Pdx1-C exposed for interactions with trans-regulatory co-factors that contribute with Pdx1 to transcription control in the cell.
Collapse
|
6
|
The Use of 13C Direct-Detect NMR to Characterize Flexible and Disordered Proteins. Methods Enzymol 2018; 611:81-100. [DOI: 10.1016/bs.mie.2018.08.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
7
|
Gibbs EB, Cook EC, Showalter SA. Application of NMR to studies of intrinsically disordered proteins. Arch Biochem Biophys 2017; 628:57-70. [PMID: 28502465 DOI: 10.1016/j.abb.2017.05.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Abstract
The prevalence of intrinsically disordered protein regions, particularly in eukaryotic proteins, and their clear functional advantages for signaling and gene regulation have created an imperative for high-resolution structural and mechanistic studies. NMR spectroscopy has played a central role in enhancing not only our understanding of the intrinsically disordered native state, but also how that state contributes to biological function. While pathological functions associated with protein aggregation are well established, it has recently become clear that disordered regions also mediate functionally advantageous assembly into high-order structures that promote the formation of membrane-less sub-cellular compartments and even hydrogels. Across the range of functional assembly states accessed by disordered regions, post-translational modifications and regulatory macromolecular interactions, which can also be investigated by NMR spectroscopy, feature prominently. Here we will explore the many ways in which NMR has advanced our understanding of the physical-chemical phase space occupied by disordered protein regions and provide prospectus for the future role of NMR in this emerging and exciting field.
Collapse
Affiliation(s)
- Eric B Gibbs
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Erik C Cook
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
8
|
Gibbs EB, Showalter SA. Quantification of Compactness and Local Order in the Ensemble of the Intrinsically Disordered Protein FCP1. J Phys Chem B 2016; 120:8960-9. [DOI: 10.1021/acs.jpcb.6b06934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Eric B. Gibbs
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott A. Showalter
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
9
|
Assessing Coupled Protein Folding and Binding Through Temperature-Dependent Isothermal Titration Calorimetry. Methods Enzymol 2016; 567:23-45. [DOI: 10.1016/bs.mie.2015.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Rudzinski JF, Noid WG. Bottom-Up Coarse-Graining of Peptide Ensembles and Helix–Coil Transitions. J Chem Theory Comput 2015; 11:1278-91. [DOI: 10.1021/ct5009922] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joseph F. Rudzinski
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - William G. Noid
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
11
|
Gibbs EB, Showalter SA. Quantitative biophysical characterization of intrinsically disordered proteins. Biochemistry 2015; 54:1314-26. [PMID: 25631161 DOI: 10.1021/bi501460a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intrinsically disordered proteins (IDPs) are broadly defined as protein regions that do not cooperatively fold into a spatially or temporally stable structure. Recent research strongly supports the hypothesis that a conserved functional role for structural disorder renders IDPs uniquely capable of functioning in biological processes such as cellular signaling and transcription. Recently, the frequency of application of rigorous mechanistic biochemistry and quantitative biophysics to disordered systems has increased dramatically. For example, the launch of the Protein Ensemble Database (pE-DB) demonstrates that the potential now exists to refine models for the native state structure of IDPs using experimental data. However, rigorous assessment of which observables place the strongest and least biased constraints on those ensembles is now needed. Most importantly, the past few years have seen strong growth in the number of biochemical and biophysical studies attempting to connect structural disorder with function. From the perspective of equilibrium thermodynamics, there is a clear need to assess the relative significance of hydrophobic versus electrostatic forces in IDP interactions, if it is possible to generalize at all. Finally, kinetic mechanisms that invoke conformational selection and/or induced fit are often used to characterize coupled IDP folding and binding, although application of these models is typically built upon thermodynamic observations. Recently, the reaction rates and kinetic mechanisms of more intrinsically disordered systems have been tested through rigorous kinetic experiments. Motivated by these exciting advances, here we provide a review and prospectus for the quantitative study of IDP structure, thermodynamics, and kinetics.
Collapse
Affiliation(s)
- Eric B Gibbs
- Department of Chemistry, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
12
|
Lawrence CW, Kumar S, Noid WG, Showalter SA. Role of Ordered Proteins in the Folding-Upon-Binding of Intrinsically Disordered Proteins. J Phys Chem Lett 2014; 5:833-838. [PMID: 26274075 DOI: 10.1021/jz402729x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, we quantitatively investigate the thermodynamic analogy between the folding of monomeric proteins and the interactions of intrinsically disordered proteins (IDPs). Motivated by the hypothesis that similar hydrophobic forces guide both globular protein folding and also IDP interactions, we present a unified experimental and computational investigation of the coupling between the folding and binding of the intrinsically disordered tail of FCP1 when interacting with the cooperatively folding winged-helix domain of Rap74. Our calorimetric measurements quantitatively demonstrate the significance of hydrophobic interactions for this binding event. Our computational studies indicate that IDPs relieve frustration at the surface of ordered proteins to generate a minimally frustrated complex that is strikingly similar to a globular monomeric protein. In summary, these results not only quantify the thermodynamic forces driving disordered protein interactions but also highlight the role of ordered proteins for IDP function.
Collapse
Affiliation(s)
- Chad W Lawrence
- §Department of Chemistry and †Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sushant Kumar
- §Department of Chemistry and †Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - William G Noid
- §Department of Chemistry and †Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott A Showalter
- §Department of Chemistry and †Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Ball KA, Wemmer DE, Head-Gordon T. Comparison of structure determination methods for intrinsically disordered amyloid-β peptides. J Phys Chem B 2014; 118:6405-16. [PMID: 24410358 PMCID: PMC4066902 DOI: 10.1021/jp410275y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intrinsically disordered proteins (IDPs) represent a new frontier in structural biology since the primary characteristic of IDPs is that structures need to be characterized as diverse ensembles of conformational substates. We compare two general but very different ways of combining NMR spectroscopy with theoretical methods to derive structural ensembles for the disease IDPs amyloid-β 1-40 and amyloid-β 1-42, which are associated with Alzheimer's Disease. We analyze the performance of de novo molecular dynamics and knowledge-based approaches for generating structural ensembles by assessing their ability to reproduce a range of NMR experimental observables. In addition to the comparison of computational methods, we also evaluate the relative value of different types of NMR data for refining or validating the IDP structural ensembles for these important disease peptides.
Collapse
Affiliation(s)
- K Aurelia Ball
- Graduate Group in Biophysics , Berkeley, California 94720, United States
| | | | | |
Collapse
|
14
|
Sahu D, Bastidas M, Showalter SA. Generating NMR chemical shift assignments of intrinsically disordered proteins using carbon-detected NMR methods. Anal Biochem 2013; 449:17-25. [PMID: 24333248 DOI: 10.1016/j.ab.2013.12.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
Abstract
There is an extraordinary need to describe the structures of intrinsically disordered proteins (IDPs) due to their role in various biological processes involved in signaling and transcription. However, general study of IDPs by NMR spectroscopy is limited by the poor (1)H amide chemical shift dispersion typically observed in their spectra. Recently, (13)C direct-detected NMR spectroscopy has been recognized as enabling broad structural study of IDPs. Most notably, multidimensional experiments based on the (15)N,(13)C CON spectrum make complete chemical shift assignment feasible. Here we document a collection of NMR-based tools that efficiently lead to chemical shift assignment of IDPs, motivated by a case study of the C-terminal disordered region from the human pancreatic transcription factor Pdx1. Our strategy builds on the combination of two three-dimensional (3D) experiments, (HN-flip)N(CA)CON and 3D (HN-flip)N(CA)NCO, that enable daisy chain connections to be built along the IDP backbone, facilitated by acquisition of amino acid-specific (15)N,(13)C CON-detected experiments. Assignments are completed through carbon-detected, total correlation spectroscopy (TOCSY)-based side chain chemical shift measurement. Conducting our study required producing valuable modifications to many previously published pulse sequences, motivating us to announce the creation of a database of our pulse programs, which we make freely available through our website.
Collapse
Affiliation(s)
- Debashish Sahu
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Monique Bastidas
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
15
|
Uversky VN. The most important thing is the tail: multitudinous functionalities of intrinsically disordered protein termini. FEBS Lett 2013; 587:1891-901. [PMID: 23665034 DOI: 10.1016/j.febslet.2013.04.042] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 01/29/2023]
Abstract
Many functional proteins do not have well-folded structures in their substantial parts, representing hybrids that possess both ordered and disordered regions. Disorder is unevenly distributed within these hybrid proteins and is typically more common at protein termini. Disordered tails are engaged in a wide range of functions, some of which are unique for termini and cannot be found in other disordered parts of a protein. This review covers some of the key functions of disordered protein termini and emphasizes that these tails are not simple flexible protrusions but are evolved to serve.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
16
|
Kumar S, Showalter SA, Noid WG. Native-based simulations of the binding interaction between RAP74 and the disordered FCP1 peptide. J Phys Chem B 2013; 117:3074-85. [PMID: 23387368 DOI: 10.1021/jp310293b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
By dephosphorylating the C-terminal domain (CTD) of RNA polymerase II (Pol II), the Transcription Factor IIF (TFIIF)-associating CTD phosphatase (FCP1) performs an essential function in recycling Pol II for subsequent rounds of transcription. The interaction between FCP1 and TFIIF is mediated by the disordered C-terminal tail of FCP1, which folds to form an α-helix upon binding the RAP74 subunit of TFIIF. The present work reports a structure-based simulation study of this interaction between the folded winged-helix domain of RAP74 and the disordered C-terminal tail of FCP1. The comparison of measured and simulated chemical shifts suggests that the FCP1 peptide samples 40-60% of its native helical structure in the unbound disordered ensemble. Free energy calculations suggest that productive binding begins when RAP74 makes hydrophobic contacts with the C-terminal region of the FCP1 peptide. The FCP1 peptide then folds into an amphipathic helix by zipping up the binding interface. The relative plasticity of FCP1 results in a more cooperative binding mechanism, allows for a greater diversity of pathways leading to the bound complex, and may also eliminate the need for "backtracking" from contacts that form out of sequence.
Collapse
Affiliation(s)
- Sushant Kumar
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | |
Collapse
|
17
|
Mechelke M, Habeck M. A probabilistic model for secondary structure prediction from protein chemical shifts. Proteins 2013; 81:984-93. [DOI: 10.1002/prot.24249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 11/07/2012] [Accepted: 12/18/2012] [Indexed: 11/10/2022]
|
18
|
Lawrence CW, Showalter SA. Carbon-Detected (15)N NMR Spin Relaxation of an Intrinsically Disordered Protein: FCP1 Dynamics Unbound and in Complex with RAP74. J Phys Chem Lett 2012; 3:1409-1413. [PMID: 26286791 DOI: 10.1021/jz300432e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Intrinsically disordered proteins (IDPs) lack unique 3D structures under native conditions and as such exist as highly dynamic ensembles in solution. We present two (13)C-direct detection experiments for the measurement of (15)N NMR spin relaxation called the CON(T1)-IPAP and CON(T2)-IPAP that quantify backbone dynamics on a per-residue basis for IDPs in solution. These experiments have been applied to the intrinsically disordered C-terminal of FCP1, both free in solution and while bound to the RAP74 winged-helix domain. The results provide evidence that most of FCP1 remains highly dynamic in both states, while the 20 residues forming direct contact with RAP74 become more ordered in the complex. Parallel analysis of RAP74 backbone (15)N NMR spin relaxation reveals only very limited ordering of RAP74 upon FCP1 binding. Taken together, these data show that folding-upon-binding is highly local in this system, with disorder prevailing even in the complex.
Collapse
Affiliation(s)
- Chad W Lawrence
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
19
|
Camilloni C, De Simone A, Vranken WF, Vendruscolo M. Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 2012; 51:2224-31. [PMID: 22360139 DOI: 10.1021/bi3001825] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One of the major open challenges in structural biology is to achieve effective descriptions of disordered states of proteins. This problem is difficult because these states are conformationally highly heterogeneous and cannot be represented as single structures, and therefore it is necessary to characterize their conformational properties in terms of probability distributions. Here we show that it is possible to obtain highly quantitative information about particularly important types of probability distributions, the populations of secondary structure elements (α-helix, β-strand, random coil, and polyproline II), by using the information provided by backbone chemical shifts. The application of this approach to mammalian prions indicates that for these proteins a key role in molecular recognition is played by disordered regions characterized by highly conserved polyproline II populations. We also determine the secondary structure populations of a range of other disordered proteins that are medically relevant, including p53, α-synuclein, and the Aβ peptide, as well as an oligomeric form of αB-crystallin. Because chemical shifts are the nuclear magnetic resonance parameters that can be measured under the widest variety of conditions, our approach can be used to obtain detailed information about secondary structure populations for a vast range of different protein states.
Collapse
Affiliation(s)
- Carlo Camilloni
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | | | | |
Collapse
|
20
|
Wostenberg C, Kumar S, Noid WG, Showalter SA. Atomistic Simulations Reveal Structural Disorder in the RAP74-FCP1 Complex. J Phys Chem B 2011; 115:13731-9. [DOI: 10.1021/jp208008m] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Christopher Wostenberg
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Sushant Kumar
- Huck Insitutes for the Life Sciences, The Pennsylvania State University, Pennsylvania 16802, United States
| | - William G. Noid
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| | - Scott A. Showalter
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|