1
|
Qazi S, Jit BP, Das A, Karthikeyan M, Saxena A, Ray M, Singh AR, Raza K, Jayaram B, Sharma A. BESFA: bioinformatics based evolutionary, structural & functional analysis of prostrate, Placenta, Ovary, Testis, and Embryo (POTE) paralogs. Heliyon 2022; 8:e10476. [PMID: 36132183 PMCID: PMC9483601 DOI: 10.1016/j.heliyon.2022.e10476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
The POTE family comprises 14 paralogues and is primarily expressed in Prostrate, Placenta, Ovary, Testis, Embryo (POTE), and cancerous cells. The prospective function of the POTE protein family under physiological conditions is less understood. We systematically analyzed their cellular localization and molecular docking analysis to elucidate POTE proteins' structure, function, and Adaptive Divergence. Our results suggest that group three POTE paralogs (POTEE, POTEF, POTEI, POTEJ, and POTEKP (a pseudogene)) exhibits significant variation among other members could be because of their Adaptive Divergence. Furthermore, our molecular docking studies on POTE protein revealed the highest binding affinity with NCI-approved anticancer compounds. Additionally, POTEE, POTEF, POTEI, and POTEJ were subject to an explicit molecular dynamic simulation for 50ns. MM-GBSA and other essential electrostatics were calculated that showcased that only POTEE and POTEF have absolute binding affinities with minimum energy exploitation. Thus, this study’s outcomes are expected to drive cancer research to successful utilization of POTE genes family as a new biomarker, which could pave the way for the discovery of new therapies.
Collapse
Affiliation(s)
- Sahar Qazi
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Bimal Prasad Jit
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
| | - Abhishek Das
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
| | - Muthukumarasamy Karthikeyan
- National Chemical Laboratory, Council of Scientific and Industrial Research (NCL-CSIR), Pune, Maharashtra, India
| | - Amit Saxena
- Centre for Development of Advanced Computing, Pune, Maharashtra, India
| | - M.D. Ray
- Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi 110029, India
| | - Angel Rajan Singh
- Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi 110029, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - B. Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Indian Institute of Technology, Delhi, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Delhi 110029, India
- Corresponding author.
| |
Collapse
|
2
|
Zhu G, Wang F, Li H, Zhang X, Wu Q, Liu Y, Qian M, Guo S, Yang Y, Xue X, Sun F, Qiao Y, Pan Q. N-Myristoylation by NMT1 Is POTEE-Dependent to Stimulate Liver Tumorigenesis via Differentially Regulating Ubiquitination of Targets. Front Oncol 2021; 11:681366. [PMID: 34136404 PMCID: PMC8201403 DOI: 10.3389/fonc.2021.681366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Background A tremendous amount of studies have suggested that post-translational modifications (PTMs) play pivotal roles during tumorigenesis. Compared to other PTMs, lipid modification is less studied. Recently, N-myristoylation, one type of lipid modification, has been paid attention to the field of cancer. However, whether and how N-myristoylation exerts its roles in liver tumorigenesis still remains unclear. Methods Parallel reaction monitoring (PRM) was conducted to evaluate the expression of protein modification enzymes in paired tissues. Liver conditionally knocking NMT1 out mice model was used to assess the critical roles of N-myristoylation during liver tumorigenesis. Proteomics isobaric tags for relative and absolute quantification (iTraq) was performed to identify proteins that changed while NMT1 was knocked down. The click chemistry assay was used to evaluate the N-myristoylation levels of proteins. Results Here, N-myristolyation and its enzyme NMT1, but not NMT2, were found to be critical in liver cancer. Two categories of proteins, i.e., N-myristolyation down-regulated proteins (NDP, including LXN, RPL29, and FAU) and N-myristolyation up-regulated proteins (NUP, including AHSG, ALB, and TF), were revealed negatively and positively regulated by NMT1, respectively. Both NDP and NUP could be N-myristolyated by NMT1 indispensable of POTEE. However, N-myristolyation decreased and increased stability of NDP and NUP, respectively. Mechanistically, NDP-specific binding protein RPL7A facilitated HIST1H4H, which has ubiquitin E3 ligase function, to ubiquitinate NDP. By contrast, NUP-specific binding protein HBB prevented NUP from ubiquitination by HIST1H4H. Notably, function of RPL7A and HBB was all NMT1-dependent. Moreover, NDP suppressed while NUP stimulated transformative phenotypes. Clinically, higher levels of NMT1 and NUP with lower levels of NDP had worse prognostic outcome. Conclusion Collectively, N-myristolyation by NMT1 suppresses anti-tumorigenic NDP, whereas it stimulates pro-tumorigenic NUP by interfering their ubiquitination to finally result in a pro-tumorigenic outcome in liver cancer. Targeting N-myristolyation and NMT1 might be helpful to treat liver cancer.
Collapse
Affiliation(s)
- Guoqing Zhu
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Feng Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Haojie Li
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Ya Liu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Mingping Qian
- Department of General Surgery, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Susu Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yueyue Yang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangfei Xue
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fenyong Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yongxia Qiao
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
3
|
Schaschl H, Wallner B. Population-specific, recent positive directional selection suggests adaptation of human male reproductive genes to different environmental conditions. BMC Evol Biol 2020; 20:27. [PMID: 32054438 PMCID: PMC7020506 DOI: 10.1186/s12862-019-1575-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/30/2019] [Indexed: 01/18/2023] Open
Abstract
Background Recent human transcriptomic analyses revealed a very large number of testis-enriched genes, many of which are involved in spermatogenesis. This comprehensive transcriptomic data lead us to the question whether positive selection was a decisive force influencing the evolution and variability of testis-enriched genes in humans. We used two methodological approaches to detect different levels of positive selection, namely episodic positive diversifying selection (i.e., past selection) in the human lineage within primate phylogeny, potentially driven by sperm competition, and recent positive directional selection in contemporary human populations, which would indicate adaptation to different environments. Results In the human lineage (after correction for multiple testing) we found that only the gene TULP2, for which no functional data are yet available, is subject to episodic positive diversifying selection. Using less stringent statistical criteria (uncorrected p-values), also the gene SPATA16, which has a pivotal role in male fertility and for which episodes of adaptive evolution have been suggested, also displays a putative signal of diversifying selection in the human branch. At the same time, we found evidence for recent positive directional selection acting on several human testis-enriched genes (MORC1, SLC9B1, ROPN1L, DMRT1, PLCZ1, RNF17, FAM71D and WBP2NL) that play important roles in human spermatogenesis and fertilization. Most of these genes are population-specifically under positive selection. Conclusion Episodic diversifying selection, possibly driven by sperm competition, was not an important force driving the evolution of testis-enriched genes in the human lineage. Population-specific, recent positive directional selection suggests an adaptation of male reproductive genes to different environmental conditions. Positive selection acts on eQTLS and sQTLs, indicating selective effects on important gene regulatory functions. In particular, the transcriptional diversity regulated by sQTLs in testis-enriched genes may be important for spermatocytes to respond to environmental and physiological stress.
Collapse
Affiliation(s)
- Helmut Schaschl
- Department of Evolutionary Anthropology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Bernard Wallner
- Department of Behavioural Biology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
4
|
Snezhkina AV, Lukyanova EN, Fedorova MS, Kalinin DV, Melnikova NV, Stepanov OA, Kiseleva MV, Kaprin AD, Pudova EA, Kudryavtseva AV. Novel Genes Associated with the Development of Carotid Paragangliomas. Mol Biol 2019. [DOI: 10.1134/s0026893319040137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Barger CJ, Zhang W, Sharma A, Chee L, James SR, Kufel CN, Miller A, Meza J, Drapkin R, Odunsi K, Klinkebiel D, Karpf AR. Expression of the POTE gene family in human ovarian cancer. Sci Rep 2018; 8:17136. [PMID: 30459449 PMCID: PMC6244393 DOI: 10.1038/s41598-018-35567-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/07/2018] [Indexed: 12/23/2022] Open
Abstract
The POTE family includes 14 genes in three phylogenetic groups. We determined POTE mRNA expression in normal tissues, epithelial ovarian and high-grade serous ovarian cancer (EOC, HGSC), and pan-cancer, and determined the relationship of POTE expression to ovarian cancer clinicopathology. Groups 1 & 2 POTEs showed testis-specific expression in normal tissues, consistent with assignment as cancer-testis antigens (CTAs), while Group 3 POTEs were expressed in several normal tissues, indicating they are not CTAs. Pan-POTE and individual POTEs showed significantly elevated expression in EOC and HGSC compared to normal controls. Pan-POTE correlated with increased stage, grade, and the HGSC subtype. Select individual POTEs showed increased expression in recurrent HGSC, and POTEE specifically associated with reduced HGSC OS. Consistent with tumors, EOC cell lines had significantly elevated Pan-POTE compared to OSE and FTE cells. Notably, Group 1 & 2 POTEs (POTEs A/B/B2/C/D), Group 3 POTE-actin genes (POTEs E/F/I/J/KP), and other Group 3 POTEs (POTEs G/H/M) show within-group correlated expression, and pan-cancer analyses of tumors and cell lines confirmed this relationship. Based on their restricted expression in normal tissues and increased expression and association with poor prognosis in ovarian cancer, POTEs are potential oncogenes and therapeutic targets in this malignancy.
Collapse
Affiliation(s)
- Carter J Barger
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Wa Zhang
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Ashok Sharma
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Linda Chee
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
| | - Smitha R James
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Christina N Kufel
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Austin Miller
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jane Meza
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, 68198-4375, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Kunle Odunsi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - David Klinkebiel
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA
- Department of Biochemistry, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Adam R Karpf
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-6805, USA.
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
6
|
Wang L, Li M, Zhan Y, Ban X, Zeng T, Zhu Y, Yun J, Guan XY, Li Y. Down-regulation of POTEG predicts poor prognosis in esophageal squamous cell carcinoma patients. Mol Carcinog 2018; 57:886-895. [PMID: 29566278 PMCID: PMC6001627 DOI: 10.1002/mc.22809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/08/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
POTE ankyrin domain family, member G (poteg) belongs to POTE family. The POTE family is composed of many proteins which are very closely related and expressed in prostate, ovary, testis, and placenta. Some POTE paralogs are related with some cancers. Here we showed that down‐regulation of POTEG was detected in about 60% primary esophageal squamous cell carcinoma (ESCC) tumor tissues. Clinical association studies determined that POTEG down‐regulation was significantly correlated with tumor differentiation, lymph nodes metastasis and TNM staging. Kaplan‐Meier analysis determined that POTEG down‐regulation was associated with poorer clinical outcomes of ESCC patients (P = 0.026). Functional studies showed that POTEG overexpression could suppress tumor cell growth and metastasis capacity in vitro and in vivo. Molecular analyses revealed that POTEG downregulated CDKs, leading to subsequent inhibition of Rb phosphorylation, and consequently arrested Cell Cycle at G1/S Checkpoint. POTEG overexpression induced apoptosis by activating caspases and PARP, and regulating canonical mitochondrial apoptotic pathways. On the other side, POTEG inhibited epithelial‐mesenchymal transition and suppressed tumor cell metastasis. In conclusion, our study reveals a functionally important control mechanism of POTEG in esophageal cancer pathogenesis, suggesting potential use in the ESCC intervention and therapeutic strategies.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Guangdong Esophageal Cancer Institute, Guangzhou, P.R. China
| | - Mengqing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yuting Zhan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xiaojiao Ban
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Tingting Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yinghui Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.,Department of Clinical Oncology, The University of Hong Kong, Hong Kong, P.R. China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| |
Collapse
|
7
|
Sengodan SK, Rajan A, Hemalatha SK, Nadhan R, Jaleel A, Srinivas P. Proteomic Profiling of β-hCG-Induced Spheres in BRCA1 Defective Triple Negative Breast Cancer Cells. J Proteome Res 2017; 17:276-289. [DOI: 10.1021/acs.jproteome.7b00562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Satheesh Kumar Sengodan
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Arathi Rajan
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Sreelatha Krishnakumar Hemalatha
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Revathy Nadhan
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Abdul Jaleel
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| | - Priya Srinivas
- Cancer Research Program and ‡Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695 014, India
| |
Collapse
|
8
|
Misawa A, Takayama KI, Fujimura T, Homma Y, Suzuki Y, Inoue S. Androgen-induced lncRNA POTEF-AS1 regulates apoptosis-related pathway to facilitate cell survival in prostate cancer cells. Cancer Sci 2017; 108:373-379. [PMID: 28032932 PMCID: PMC5378265 DOI: 10.1111/cas.13151] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
Although long non‐coding RNAs (lncRNAs) have been associated with a variety of cancers, the interplay between lncRNAs and androgen receptor signaling in prostate cancer is still unclear. We identified an androgen‐dependent lncRNA, POTEF‐AS1, whose expression was regulated by androgen receptor in two androgen‐dependent cells by using directional RNA sequencing analysis. POTEF‐AS1 promoted cell growth, repressed genes related to the Toll‐like receptor signaling and apoptosis pathways, and inhibited apoptosis in docetaxel‐treated LNCaP cells. These findings suggest that POTEF‐AS1 would play a key role in the progression of prostate cancer by repressing Toll‐like receptor signaling.
Collapse
Affiliation(s)
- Aya Misawa
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ken-Ichi Takayama
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tetsuya Fujimura
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Satoshi Inoue
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Japan
| |
Collapse
|
9
|
Chen CP, Wang KG, Huang HK, Peng CR, Chern SR, Wu PS, Chen YN, Chen SW, Lee CC, Wang W. Detection of mosaic 15q11.1-q11.2 deletion encompassing NBEAP1 and POTEB in a fetus with diffuse lymphangiomatosis. Taiwan J Obstet Gynecol 2017; 56:230-233. [DOI: 10.1016/j.tjog.2017.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 10/19/2022] Open
|
10
|
Wang Q, Li X, Ren S, Cheng N, Zhao M, Zhang Y, Li J, Cai W, Zhao C, Cao W, Zhou C. Serum levels of the cancer-testis antigen POTEE and its clinical significance in non-small-cell lung cancer. PLoS One 2015; 10:e0122792. [PMID: 25860145 PMCID: PMC4393100 DOI: 10.1371/journal.pone.0122792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/15/2015] [Indexed: 02/01/2023] Open
Abstract
Background POTEE (POTE ankyrin domain family, member E) is a newly identified cancer-testis antigen that has been found to be expressed in a wide variety of human cancers including cancers of the colon, prostate, lung, breast, ovary, and pancreas. Aim To measure the serum levels of POTEE in patients with non-small-cell lung cancer (NSCLC) and to explore the clinical significance of POTEE in NSCLC. Patients and Methods 104 NSCLC patients, 66 benign lung disease patients and 80 healthy volunteers were enrolled in this study from May 2013 to February 2014. Serum POTEE levels were measured using enzyme-linked immunosorbent assay (ELISA). Numerical variables were recorded as means ± standard deviation (SD) and analyzed by independent t tests. Categorical variables were calculated as rates and were analyzed using a χ2 test or Fisher’s exact test. Survival curves were estimated and compared using the Kaplan-Meier method and log-rank tests. Results Serum POTEE levels were significantly higher in NSCLC patients than in benign lung disease patients and healthy controls (mean ± SD [pg/ml], 324.38± 13.84 vs. 156.93 ± 17.38 and 139.09 ± 15.80, P<0.001) and were significantly correlated with TNM stage. Survival analysis revealed that patients with low serum POTEE had longer progression-free survival (PFS) than those with high serum POTEE (P=0.021). Cox multivariate analysis indicated that POTEE was an independent prognostic factor of progression-free survival (P =0.009, hazard ratio, 2.440). Conclusions Serum POTEE level in NSCLC patients is associated with TNM stage and is a potential prognostic factor.
Collapse
Affiliation(s)
- Qi Wang
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Shengxiang Ren
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Ningning Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Mingchuan Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Yishi Zhang
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Jiayu Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Weijing Cai
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Wa Cao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
| | - Caicun Zhou
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Tongji University Medical School Cancer Institute, Shanghai, People’s Republic of China
- * E-mail:
| |
Collapse
|
11
|
Redfield SM, Mao J, Zhu H, He Z, Zhang X, Bigler SA, Zhou X. The C-terminal common to group 3 POTES (CtG3P): a newly discovered nucleolar marker associated with malignant progression and metastasis. Am J Cancer Res 2013; 3:278-289. [PMID: 23841027 PMCID: PMC3696534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/31/2013] [Indexed: 06/02/2023] Open
Abstract
A gene family expressed in prostate, ovary, testis and placenta (POTEs) is newly defined and primate-specific. POTE genes have 13 paralogs, which are dispersed in 8 chromosomes and divided into three groups. The proteins encoded by these genes contain three domains: An N-terminal, ankyrin repeats and a C-terminus. Previous studies suggest that POTE proteins are localized in the inner aspect of cellular membrane and are considered as cancer-testis antigens, because they expressed widely in cancers, but in limited benign tissues. In this study, we will study the subcellular distribution of all POTE proteins and their associations with the progress and metastasis of malignancies. By performing Immunohistochemistry, Immunocytochemistry and immunofluorescence assay on tissue microarray slides containing tissues with different pathology and origins or on cell lines, we found that the epitopes of N- and C-terminals of all detected POTEs were widely expressed in benign and malignant tissues. Among these epitopes, C-terminal common to group 3 POTEs (CtG3P) was the only portion localized in nucleoli. The nucleolar IHC scores for CtG3P was lowest in benign tissues (4.47 ± 3.43), significantly higher in localized malignancies (5.32 ± 3.36, p = 3.63E-02), and highest in metastatic malignancies (7.90 ± 2.29, p = 8.13E-12). The CtG3P was better in differentiation of benign from malignant changes, and/or in differentiation of localized from metastatic cancers as compared with Ki-67 and AgNORs. In addition, transient transfection of siRNA against mRNA of group 3 POTEs influences the growth and survival of MCF-7 cells in vitro in a dose dependent manner.
Collapse
Affiliation(s)
- Samantha M Redfield
- Department of Pathology, University of Mississippi Medical Center2500 North State Street, MS 39216, USA
| | - Jinghe Mao
- Department of Biology, Tougaloo College500 West County Line Road, Tougaloo, MS 39157, USA
| | - He Zhu
- Department of Pathology, University of Mississippi Medical Center2500 North State Street, MS 39216, USA
| | - Zhi He
- Department of Pathology, University of Mississippi Medical Center2500 North State Street, MS 39216, USA
| | - Xu Zhang
- Center of biostatistics and Bioinformatics, University of Mississippi Medical Center2500 North State Street, MS 39216, USA
| | - Steven A Bigler
- Department of Pathology, Mississippi Baptist Medical Center1190 North State Street, Jackson, MS 39202, USA
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical Center2500 North State Street, MS 39216, USA
| |
Collapse
|