1
|
Simfia I, Schiavi J, McNamara LM. ROCK-II inhibition suppresses impaired mechanobiological responses in early estrogen deficient osteoblasts. Exp Cell Res 2020; 396:112264. [PMID: 32898551 DOI: 10.1016/j.yexcr.2020.112264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/22/2022]
Abstract
Mechanobiological responses by osteoblasts are governed by downstream Rho-ROCK signalling through actin cytoskeleton re-arrangements but whether these responses are influenced by estrogen deficiency during osteoporosis remains unknown. The objective of this study was to determine alterations in the mechanobiological responses of estrogen-deficient osteoblasts and investigate whether an inhibitor of the Rho-ROCK signalling can revert these changes. MC3T3-E1 cells were pre-treated with 10 nM 17-β estradiol for 7 days and further cultured with or without estradiol for next 2 days. These cells were treated with or without ROCK-II inhibitor, Y-27632, and oscillatory fluid flow (OFF, 1Pa, 0.5 Hz, 1 h) was applied. Here, we report that Prostaglandin E2 release, Runt-related transcription factor 2 and Osteopontin gene expression were significantly enhanced in response to OFF in estrogen-deficient cells than in cells with estrogen (3.73 vs 1.63 pg/ng DNA; 13.5 vs 2.6 fold, 2.1 vs 0.4 fold respectively). Upon ROCK-II inhibition, these enhanced effects of estrogen deficiency were downregulated. OFF increased the fibril anisotropy in cells pre-treated with estrogen and this increase was suppressed upon ROCK-II inhibition. This study is the first to demonstrate altered mechanobiological responses by osteoblasts during early estrogen deficiency and that these responses to OFF can be suppressed upon ROCK inhibition.
Collapse
Affiliation(s)
- Irene Simfia
- Mechanobiology and Medical Device Research Group, Biomechanics Research Centre, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Jessica Schiavi
- Mechanobiology and Medical Device Research Group, Biomechanics Research Centre, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Device Research Group, Biomechanics Research Centre, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
2
|
Bartolozzi A, Viti F, De Stefano S, Sbrana F, Petecchia L, Gavazzo P, Vassalli M. Development of label-free biophysical markers in osteogenic maturation. J Mech Behav Biomed Mater 2019; 103:103581. [PMID: 32090910 DOI: 10.1016/j.jmbbm.2019.103581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/23/2022]
Abstract
The spatial and temporal changes of morphological and mechanical properties of living cells reflect complex functionally-associated processes. Monitoring these modifications could provide a direct information on the cellular functional state. Here we present an integrated biophysical approach to the quantification of the morphological and mechanical phenotype of single cells along a maturation pathway. Specifically, quantitative phase microscopy and single cell biomechanical testing were applied to the characterization of the maturation of human foetal osteoblasts, demonstrating the ability to identify effective label-free biomarkers along this fundamental biological process.
Collapse
Affiliation(s)
- Alice Bartolozzi
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy; Dipartimento di Ingegneria dell'Informazione, Università di Firenze, Florence, Italy
| | - Federica Viti
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy.
| | - Silvia De Stefano
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy
| | - Francesca Sbrana
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy; Schaefer South-East Europe Srl, Rovigo, Italy
| | - Loredana Petecchia
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy
| | - Paola Gavazzo
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy
| | - Massimo Vassalli
- Institute of Biophysics, National Research Council of Italy, Genoa, Italy
| |
Collapse
|
3
|
Lee T. Mechanical and Mechanosensing Properties of Tumor Affected Bone Cells Were Inhibited via PI3K/Akt Pathway. J Bone Metab 2019; 26:179-191. [PMID: 31555615 PMCID: PMC6746668 DOI: 10.11005/jbm.2019.26.3.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background Osteolytic metastasis is a common destructive form of metastasis, in which there is an increased bone resorption but impaired bone formation. It is hypothesized that the changed mechanical properties of tumor affected bone cells could inhibit its mechanosensing, thus contributing to differences in bone remodeling. Methods Here, atomic force microscopy indentation on primary bone cells exposed to 50% conditioned medium from Walker 256 (W) carcinoma cell line or its adaptive tumor (T) cells was carried out. Nitric oxide levels of bone cells were monitored in response to low-magnitude, high-frequency (LMHF) vibrations. Results A stronger sustained inhibitive effect on bone cell viability and differentiation by T cells as compared to that of its cell line was demonstrated. This could be attributed to the higher levels of transforming growth factor-β1 (TGF-β1) in the T-conditioned medium as compared to W-conditioned medium. Bone cell elastic moduli in W and T-groups were found to decrease significantly by 61.0% and 69.6%, respectively compared to control and corresponded to filamentous actin changes. Nitric oxide responses were significantly inhibited in T-conditioned group but not in W-conditioned group. Conclusions It implied that a change in cell mechanical properties is not sufficient as an indicator of change in mechanosensing ability. Moreover, inhibition of phosphoinositide 3-kinase/Akt downstream signaling pathway of TGF-β1 alleviated the inhibition effects on mechanosensing in T-conditioned cells, further suggesting that growth factors such as TGF-β could be good therapeutic targets for osteoblast treatment.
Collapse
Affiliation(s)
- Taeyong Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, Korea
| |
Collapse
|
4
|
Marcotti S, Reilly GC, Lacroix D. Effect of cell sample size in atomic force microscopy nanoindentation. J Mech Behav Biomed Mater 2019; 94:259-266. [PMID: 30928670 DOI: 10.1016/j.jmbbm.2019.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/21/2018] [Accepted: 03/17/2019] [Indexed: 11/25/2022]
Abstract
Single-cell technologies are powerful tools to evaluate cell characteristics. In particular, Atomic Force Microscopy (AFM) nanoindentation experiments have been widely used to study single cell mechanical properties. One important aspect related to single cell techniques is the need for sufficient statistical power to obtain reliable results. This aspect is often overlooked in AFM experiments were sample sizes are arbitrarily set. The aim of the present work was to propose a tool for sample size estimation in the context of AFM nanoindentation experiments of single cell. To this aim, a retrospective approach was used by acquiring a large dataset of experimental measurements on four bone cell types and by building saturation curves for increasing sample sizes with a bootstrap resampling method. It was observed that the coefficient of variation (CV%) decayed with a function of the form y = axb with similar parameters for all samples tested and that sample sizes of 21 and 83 cells were needed for the specific cells and protocol employed if setting a maximum threshold on CV% of 10% or 5%, respectively. The developed tool is made available as an open-source repository and guidelines are provided for its use for AFM nanoindentation experimental design.
Collapse
Affiliation(s)
- Stefania Marcotti
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Mechanical Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London SE1 1UL, UK.
| | - Gwendolen C Reilly
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Materials Science and Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Damien Lacroix
- Insigneo Institute for in silico Medicine, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK; Department of Mechanical Engineering, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
5
|
Pabbidi MR, Kuppusamy M, Didion SP, Sanapureddy P, Reed JT, Sontakke SP. Sex differences in the vascular function and related mechanisms: role of 17β-estradiol. Am J Physiol Heart Circ Physiol 2018; 315:H1499-H1518. [PMID: 30192631 DOI: 10.1152/ajpheart.00194.2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The incidence of cardiovascular disease (CVD) is lower in premenopausal women but increases with age and menopause compared with similarly aged men. Based on the prevalence of CVD in postmenopausal women, sex hormone-dependent mechanisms have been postulated to be the primary factors responsible for the protection from CVD in premenopausal women. Recent Women’s Health Initiative studies, Cochrane Review studies, the Early Versus Late Intervention Trial with Estradiol Study, and the Kronos Early Estrogen Prevention Study have suggested that beneficial effects of hormone replacement therapy (HRT) are seen in women of <60 yr of age and if initiated within <10 yr of menopause. In contrast, the beneficial effects of HRT are not seen in women of >60 yr of age and if commenced after 10 yr of menopause. The higher incidence of CVD and the failure of HRT in postmenopausal aged women could be partly associated with fundamental differences in the vascular structure and function between men and women and in between pre- and postmenopausal women, respectively. In this regard, previous studies from human and animal studies have identified several sex differences in vascular function and associated mechanisms. The female sex hormone 17β-estradiol regulates the majority of these mechanisms. In this review, we summarize the sex differences in vascular structure, myogenic properties, endothelium-dependent and -independent mechanisms, and the role of 17β-estradiol in the regulation of vascular function.
Collapse
Affiliation(s)
- Mallikarjuna R. Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Maniselvan Kuppusamy
- Division of Endocrinology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sean P. Didion
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Padmaja Sanapureddy
- Department of Primary Care and Medicine, G. V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi
| | - Joey T. Reed
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sumit P. Sontakke
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
6
|
Microfluidic cell sorting by stiffness to examine heterogenic responses of cancer cells to chemotherapy. Cell Death Dis 2018; 9:239. [PMID: 29445159 PMCID: PMC5833447 DOI: 10.1038/s41419-018-0266-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022]
Abstract
Cancers consist of a heterogeneous populations of cells that may respond differently to treatment through drug-resistant sub-populations. The scarcity of these resistant sub-populations makes it challenging to understand how to counter their resistance. We report a label-free microfluidic approach to separate cancer cells treated with chemotherapy into sub-populations enriched in chemoresistant and chemosensitive cells based on the differences in cellular stiffness. The sorting approach enabled analysis of the molecular distinctions between resistant and sensitive cells. Consequently, the role of multiple mechanisms of drug resistance was identified, including decreased sensitivity to apoptosis, enhanced metabolism, and extrusion of drugs, and, for the first time, the role of estrogen receptor in drug resistance of leukemia cells. To validate these findings, several inhibitors for the identified resistance pathways were tested with chemotherapy to increase cytotoxicity sevenfold. Thus, microfluidic sorting can identify molecular mechanisms of drug resistance to examine heterogeneous responses of cancers to therapies.
Collapse
|
7
|
Finkenstaedt-Quinn SA, Qiu TA, Shin K, Haynes CL. Super-resolution imaging for monitoring cytoskeleton dynamics. Analyst 2016; 141:5674-5688. [PMID: 27549146 DOI: 10.1039/c6an00731g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cytoskeleton is a key cellular structure that is important in the control of cellular movement, structure, and sensing. To successfully image the individual cytoskeleton components, high resolution and super-resolution fluorescence imaging methods are needed. This review covers the three basic cytoskeletal elements and the relative benefits and drawbacks of fixed versus live cell imaging before moving on to recent studies using high resolution and super-resolution techniques. The techniques covered include the near-diffraction limited imaging methods of confocal microscopy and TIRF microscopy and the super-resolution fluorescence imaging methods of STORM, PALM, and STED.
Collapse
|
8
|
Verbruggen SW, Mc Garrigle MJ, Haugh MG, Voisin MC, McNamara LM. Altered mechanical environment of bone cells in an animal model of short- and long-term osteoporosis. Biophys J 2016; 108:1587-1598. [PMID: 25863050 DOI: 10.1016/j.bpj.2015.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 01/18/2023] Open
Abstract
Alterations in bone tissue composition during osteoporosis likely disrupt the mechanical environment of bone cells and may thereby initiate a mechanobiological response. It has proved challenging to characterize the mechanical environment of bone cells in vivo, and the mechanical environment of osteoporotic bone cells is not known. The objective of this research is to characterize the local mechanical environment of osteocytes and osteoblasts from healthy and osteoporotic bone in a rat model of osteoporosis. Using a custom-designed micromechanical loading device, we apply strains representative of a range of physical activity (up to 3000 με) to fluorescently stained femur samples from normal and ovariectomized rats. Confocal imaging was simultaneously performed, and digital image correlation techniques were applied to characterize cellular strains. In healthy bone tissue, osteocytes experience higher maximum strains (31,028 ± 4213 με) than osteoblasts (24,921 ± 3,832 με), whereas a larger proportion of the osteoblast experiences strains >10,000 με. Most interestingly, we show that osteoporotic bone cells experience similar or higher maximum strains than healthy bone cells after short durations of estrogen deficiency (5 weeks), and exceeded the osteogenic strain threshold (10,000 με) in a similar or significantly larger proportion of the cell (osteoblast, 12.68% vs. 13.68%; osteocyte, 15.74% vs. 5.37%). However, in long-term estrogen deficiency (34 weeks), there was no significant difference between bone cells in healthy and osteoporotic bone. These results suggest that the mechanical environment of bone cells is altered during early-stage osteoporosis, and that mechanobiological responses act to restore the mechanical environment of the bone tissue after it has been perturbed by ovariectomy.
Collapse
Affiliation(s)
- Stefaan W Verbruggen
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Myles J Mc Garrigle
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Matthew G Haugh
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Muriel C Voisin
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Laoise M McNamara
- Biomechanics Research Centre, National Centre for Biomedical Engineering Science, Biomedical Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland.
| |
Collapse
|
9
|
Abstract
Migration of the cells in osteoblastic lineage, including preosteoblasts and osteoblasts, has been postulated to influence bone formation. However, the molecular bases that link preosteoblastic/osteoblastic cell migration and bone formation are incompletely understood. Nck (noncatalytic region of tyrosine kinase; collectively referred to Nck1 and Nck2) is a member of the signaling adaptors that regulate cell migration and cytoskeletal structures, but its function in cells in the osteoblastic lineage is not known. Therefore, we examined the role of Nck in migration of these cells. Nck is expressed in preosteoblasts/osteoblasts, and its knockdown suppresses migration as well as cell spreading and attachment to substrates. In contrast, Nck1 overexpression enhances spreading and increases migration and attachment. As for signaling, Nck double knockdown suppresses migration toward IGF1 (insulin-like growth factor 1). In these cells, Nck1 binds to IRS-1 (insulin receptor substrate 1) based on immunoprecipitation experiments using anti-Nck and anti-IRS-1 antibodies. In vivo, Nck knockdown suppresses enlargement of the pellet of DiI-labeled preosteoblasts/osteoblasts placed in the calvarial defects. Genetic experiments indicate that conditional double deletion of both Nck1 and Nck2 specifically in osteoblasts causes osteopenia. In these mice, Nck double deficiency suppresses the levels of bone-formation parameters such as bone formation rate in vivo. Interestingly, bone-resorption parameters are not affected. Finally, Nck deficiency suppresses repair of bone injury after bone marrow ablation. These results reveal that Nck regulates preosteoblastic/osteoblastic migration and bone mass.
Collapse
|
10
|
Chung YS, Kang HC, Lee T. Comparative Effects of Ibandronate and Paclitaxel on Immunocompetent Bone Metastasis Model. Yonsei Med J 2015; 56:1643-50. [PMID: 26446649 PMCID: PMC4630055 DOI: 10.3349/ymj.2015.56.6.1643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/26/2014] [Accepted: 01/02/2015] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Bone metastasis invariably increases morbidity and mortality. This study compares the effects of ibandronate and paclitaxel on bone structure and its mechanical properties and biochemical turnover in resorption markers using an immunocompetent Walker 256-Sprague-Dawley model, which was subjected to tumor-induced osteolysis. MATERIALS AND METHODS Seventy rats were divided equally into 4 groups: 1) sham group (SHAM), 2) tumor group (CANC), 3) ibandronate treated group (IBAN), and 4) paclitaxel treated group (PAC). Morphological indices [bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp)] and mechanical properties (failure load, stiffness) were evaluated after thirty days of treatment period. Bone resorption rate was analysed using serum deoxypyridinoline (Dpd) concentrations. RESULTS Morphological indices showed that ibandronate (anti-resorptive drug) had a better effect in treating tumor-induced architectural changes in bone than paclitaxel (chemotherapeutic drug). The deterioration in bone architecture was reflected in the biomechanical properties of bone as studied with decreased failure load (F(x)) and stiffness (S) of the bone on the 30th day postsurgery. Dpd concentrations were significantly lower in the IBAN group, indicating successful inhibition of bone resorption and destruction. CONCLUSION Ibandronate was found to be as effective as higher doses of paclitaxel in maintaining stiffness of bone. Paclitaxel treatment did not appear to inhibit osteoclast resorption, which is contrary to earlier in-vitro literature. Emphasis should be placed on the use of immunocompetent models for examining drug efficacy since it adequately reflects bone metastasis in clinical scenarios.
Collapse
Affiliation(s)
- Yoon-Sok Chung
- Department of Endocrinology & Metabolism, Ajou University School of Medicine, Suwon, Korea
| | - Ho Chul Kang
- Department of Medical Biotechnology, Dongguk University, Seoul, Korea
| | - Taeyong Lee
- Department of Medical Biotechnology, Dongguk University, Seoul, Korea.
| |
Collapse
|
11
|
Effect of Fluoride-Modified Titanium Surface on Early Adhesion of Irradiated Osteoblasts. BIOMED RESEARCH INTERNATIONAL 2015; 2015:219752. [PMID: 26266253 PMCID: PMC4525467 DOI: 10.1155/2015/219752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/24/2015] [Indexed: 01/22/2023]
Abstract
Objective. The present study aimed to investigate the effect of fluoride-modified titanium surface on adhesion of irradiated osteoblasts. Materials and Methods. Fluoride-modified surface was obtained and the morphology, roughness, and chemical composition of the surface were evaluated by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy, respectively. The adhesion of irradiated osteoblast-like cells, in terms of number, area, and fluorescence intensity on the titanium surface, was evaluated using immunofluorescence staining. Results. Numerous nanosize pits were seen only in the F-TiO surface. The pits were more remarkable and uniform on F-TiO surface than on TiO surface; however, the amplitude of peaks and bottoms on F-TiO surface appeared to be smaller than on TiO surface. The Sa value and Sdr percentage of TiO surfaces were significantly higher than those of F-TiO surface. The concentrations of main elements such as titanium, oxygen, and carbon were similar on both surfaces. The number of irradiated osteoblasts adhered on the control surface was larger than on fluoride-modified surface. Meanwhile, the cells on the fluoride-modified surface formed more actin filaments. Conclusions. The fluoride-modified titanium surface alters the adhesion of irradiated osteoblasts. Further studies are needed to investigate the proliferation, differentiation, maturation, gene expression, and cytokine production of irradiated osteoblasts on fluoride-modified titanium surface.
Collapse
|
12
|
Yang Z, Tan S, Shen Y, Chen R, Wu C, Xu Y, Song Z, Fu Q. Inhibition of FSS-induced actin cytoskeleton reorganization by silencing LIMK2 gene increases the mechanosensitivity of primary osteoblasts. Bone 2015; 74:182-90. [PMID: 25549868 DOI: 10.1016/j.bone.2014.12.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 01/05/2023]
Abstract
Mechanical stimulation plays an important role in bone cell metabolic activity. However, bone cells lose their mechanosensitivity upon continuous mechanical stimulation (desensitization) and they can recover the sensitivity with insertion of appropriate rest period into the mechanical loading profiles. The concrete molecular mechanism behind the regulation of cell mechanosensitivity still remains unclear. As one kind of mechanosensitive cell to react to the mechanical stimulation, osteoblasts respond to fluid shear stress (FSS) with actin cytoskeleton reorganization, and the remodeling of actin cytoskeleton is closely associated with the alteration of cell mechanosensitivity. In order to find out whether inhibiting the actin cytoskeleton reorganization by silencing LIM-kinase 2 (LIMK2) gene would increase the mechanosensitivity of primary osteoblasts, we attenuated the formation of actin stress fiber under FSS in a more specific way: inhibiting the LIMK2 expression by RNA interference. We found that inhibition of LIMK2 expression by RNA interference attenuated the formation of FSS-induced actin stress fiber, and simultaneously maintained the integrity of actin cytoskeleton in primary osteoblasts. We confirmed that the decreased actin cytoskeleton reorganization in response to LIMK2 inhibition during FSS increased the mechanosensitivity of the osteoblasts, based on the increased c-Fos and COX-2 expression as well as the enhanced proliferative activity in response to FSS. These data suggest that osteoblasts can increase their mechanosensitivity under continuous mechanical stimulation by reducing the actin stress fiber formation through inhibiting the LIMK2 expression. This study provides us with a new and more specific method to regulate the osteoblast mechanosensitivity, and also a new therapeutic target to cure bone related diseases, which is of importance in maintaining bone mass and promoting osteogenesis.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Prosthodontics Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, PR China
| | - Shuyi Tan
- Department of Prosthodontics Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, PR China
| | - Yun Shen
- Department of Prosthodontics Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, PR China; Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Rui Chen
- Department of Prosthodontics Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, PR China; Guangdong No. 2 Provincial People's Hospital, Guangzhou, Guangdong 510317, PR China
| | - Changjing Wu
- Department of Prosthodontics Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, PR China; Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510800, PR China
| | - Yajuan Xu
- Department of Prosthodontics Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, PR China; Huizhou Stomatological Hospital Zhong Kai Branch, Huizhou, Guangdong 516006, PR China
| | - Zijun Song
- Department of Prosthodontics Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, PR China
| | - Qiang Fu
- Department of Prosthodontics Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, PR China.
| |
Collapse
|
13
|
Carnesecchi J, Malbouyres M, de Mets R, Balland M, Beauchef G, Vié K, Chamot C, Lionnet C, Ruggiero F, Vanacker JM. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30. PLoS One 2015; 10:e0120672. [PMID: 25781607 PMCID: PMC4363467 DOI: 10.1371/journal.pone.0120672] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/05/2015] [Indexed: 12/31/2022] Open
Abstract
The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morphological change was accompanied by a spatial re-organization of focal adhesion and a substantial reduction of their number as evidenced by vinculin and actin co-staining. Cell morphology and cytoskeleton organization was fully restored upon 17β-estradiol (E2) addition. Treatment with specific ER antagonists and cycloheximide respectively showed that the E2 acts independently of the classical Estrogen Receptors and that cell shape change is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient activation of ERK1/2 but not Src or PI3K. We show that human fibroblasts express the non-classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibiting GPR30 through treatment with the G-15 antagonist or specific shRNA impaired E2 effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibroblast by regulating cell shape through the non-classical G protein-coupled receptor GPR30 and ERK1/2 activation.
Collapse
Affiliation(s)
- Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Marilyne Malbouyres
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Richard de Mets
- Laboratoire interdisciplinaire de Physique UMR CNRS 5588, Université Joseph Fourier, Grenoble, France
| | - Martial Balland
- Laboratoire interdisciplinaire de Physique UMR CNRS 5588, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|