1
|
Delgado‐Bermúdez A, Yeste M, Bonet S, Pinart E. Physiological role of potassium channels in mammalian germ cell differentiation, maturation, and capacitation. Andrology 2025; 13:184-201. [PMID: 38436215 PMCID: PMC11815548 DOI: 10.1111/andr.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Ion channels are essential for differentiation and maturation of germ cells, and even for fertilization in mammals. Different types of potassium channels have been identified, which are grouped into voltage-gated channels (Kv), ligand-gated channels (Kligand), inwardly rectifying channels (Kir), and tandem pore domain channels (K2P). MATERIAL-METHODS The present review includes recent findings on the role of potassium channels in sperm physiology of mammals. RESULTS-DISCUSSION While most studies conducted thus far have been focused on the physiological role of voltage- (Kv1, Kv3, and Kv7) and calcium-gated channels (SLO1 and SLO3) during sperm capacitation, especially in humans and rodents, little data about the types of potassium channels present in the plasma membrane of differentiating germ cells exist. In spite of this, recent evidence suggests that the content and regulation mechanisms of these channels vary throughout spermatogenesis. Potassium channels are also essential for the regulation of sperm cell volume during epididymal maturation and for preventing premature membrane hyperpolarization. It is important to highlight that the nature, biochemical properties, localization, and regulation mechanisms of potassium channels are species-specific. In effect, while SLO3 is the main potassium channel involved in the K+ current during sperm capacitation in rodents, different potassium channels are implicated in the K+ outflow and, thus, plasma membrane hyperpolarization during sperm capacitation in other mammalian species, such as humans and pigs. CONCLUSIONS Potassium conductance is essential for male fertility, not only during sperm capacitation but throughout the spermiogenesis and epididymal maturation.
Collapse
Affiliation(s)
- Ariadna Delgado‐Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
- Department of BiologyFaculty of SciencesUnit of Cell BiologyUniversity of GironaGironaSpain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
- Department of BiologyFaculty of SciencesUnit of Cell BiologyUniversity of GironaGironaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
- Department of BiologyFaculty of SciencesUnit of Cell BiologyUniversity of GironaGironaSpain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
- Department of BiologyFaculty of SciencesUnit of Cell BiologyUniversity of GironaGironaSpain
| |
Collapse
|
2
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
3
|
Mishra NM, Spitznagel BD, Du Y, Mohamed YK, Qin Y, Weaver CD, Emmitte KA. Structure-Activity Relationship Studies in a Series of 2-Aryloxy- N-(pyrimidin-5-yl)acetamide Inhibitors of SLACK Potassium Channels. Molecules 2024; 29:5494. [PMID: 39683653 DOI: 10.3390/molecules29235494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Epilepsy of infancy with migrating focal seizures (EIMFS) is a rare, serious, and pharmacoresistant epileptic disorder often linked to gain-of-function mutations in the KCNT1 gene. KCNT1 encodes the sodium-activated potassium channel known as SLACK, making small molecule inhibitors of SLACK channels a compelling approach to the treatment of EIMFS and other epilepsies associated with KCNT1 mutations. In this manuscript, we describe a hit optimization effort executed within a series of 2-aryloxy-N-(pyrimidin-5-yl)acetamides that were identified via a high-throughput screen. We systematically prepared analogs in four distinct regions of the scaffold and evaluated their functional activity in a whole-cell, automated patch clamp (APC) assay to establish structure-activity relationships for wild-type (WT) SLACK inhibition. Two selected analogs were also profiled for selectivity versus other members of the Slo family of potassium channels, of which SLACK is a member, and versus a panel of structurally diverse ion channels. The same two analogs were evaluated for activity versus the WT mouse channel as well as two clinically relevant mutant human channels.
Collapse
Affiliation(s)
- Nigam M Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Yasmeen K Mohamed
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ying Qin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- College of Biomedical and Translational Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kyle A Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
4
|
Ehinger R, Kuret A, Matt L, Frank N, Wild K, Kabagema-Bilan C, Bischof H, Malli R, Ruth P, Bausch AE, Lukowski R. Slack K + channels attenuate NMDA-induced excitotoxic brain damage and neuronal cell death. FASEB J 2021; 35:e21568. [PMID: 33817875 DOI: 10.1096/fj.202002308rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The neuronal Na+ -activated K+ channel Slack (aka Slo2.2, KNa 1.1, or Kcnt1) has been implicated in setting and maintaining the resting membrane potential and defining excitability and firing patterns, as well as in the generation of the slow afterhyperpolarization following bursts of action potentials. Slack activity increases significantly under conditions of high intracellular Na+ levels, suggesting this channel may exert important pathophysiological functions. To address these putative roles, we studied whether Slack K+ channels contribute to pathological changes and excitotoxic cell death caused by glutamatergic overstimulation of Ca2+ - and Na+ -permeable N-methyl-D-aspartic acid receptors (NMDAR). Slack-deficient (Slack KO) and wild-type (WT) mice were subjected to intrastriatal microinjections of the NMDAR agonist NMDA. NMDA-induced brain lesions were significantly increased in Slack KO vs WT mice, suggesting that the lack of Slack renders neurons particularly susceptible to excitotoxicity. Accordingly, excessive neuronal cell death was seen in Slack-deficient primary cerebellar granule cell (CGC) cultures exposed to glutamate and NMDA. Differences in neuronal survival between WT and Slack KO CGCs were largely abolished by the NMDAR antagonist MK-801, but not by NBQX, a potent and highly selective competitive antagonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors. Interestingly, NMDAR-evoked Ca2+ signals did not differ with regard to Slack genotype in CGCs. However, real-time monitoring of K+ following NMDAR activation revealed a significant contribution of this channel to the intracellular drop in K+ . Finally, TrkB and TrkC neurotrophin receptor transcript levels were elevated in NMDA-exposed Slack-proficient CGCs, suggesting a mechanism by which this K+ channel contributes to the activation of the extracellular-signal-regulated kinase (Erk) pathway and thereby to neuroprotection. Combined, our findings suggest that Slack-dependent K+ signals oppose the NMDAR-mediated excitotoxic neuronal injury by promoting pro-survival signaling via the BDNF/TrkB and Erk axis.
Collapse
Affiliation(s)
- Rebekka Ehinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Nadine Frank
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Katharina Wild
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Clement Kabagema-Bilan
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Anne E Bausch
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Laker D, Tolle F, Stegen M, Heerdegen M, Köhling R, Kirschstein T, Wolfart J. K v7 and K ir6 Channels Shape the Slow AHP in Mouse Dentate Gyrus Granule Cells and Control Burst-like Firing Behavior. Neuroscience 2021; 467:56-72. [PMID: 34048798 DOI: 10.1016/j.neuroscience.2021.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022]
Abstract
The slow afterhyperpolarizing potential (sAHP) can silence a neuron for hundreds of milliseconds. Thereby, the sAHP determines the discharge behavior of many types of neurons. In dentate granule cells (DGCs), serving as a filter into the hippocampal network, mostly tonic or adapting discharge properties have been described. As under standard whole-cell recording conditions the sAHP is inhibited, we reevaluated the intrinsic functional phenotype of DGCs and the conductances underlying the sAHP, using gramicidine-perforated patch-clamp technique. We found that in 97/113 (86%) of the DGCs, a burst of action potentials (APs) to excitation ended by a large sAHP, despite continued depolarization. This result suggests that burst-like firing is the default functional phenotype of DGCs and that sAHPs are important for it. Indeed, burst-like firing DGCs showed a significantly higher sAHP-current (IsAHP) amplitude compared to spike-frequency adapting cells (16/113 = 14%). The IsAHP was mediated by Kv7 and Kir6 channels by pharmacological inhibition using XE991 and tolbutamide, although heterogeneously among DGCs. The percent inhibition of IsAHP by these compounds also correlated with the AP number and AP burst length. Application of 100 µM nickel after XE991 and tolbutamide detected a third conductance contributing to burst-like firing and the sAHP, most likely mediated by T-type calcium channels. Lastly, medial perforant path-dentate gyrus long-term potentiation was amplified by XE991 and tolbutamide. In conclusion, the sAHP shapes intrinsic burst-like firing which, under physiological circumstances, could be controlled via cholinergic afferents and ATP metabolism.
Collapse
Affiliation(s)
- Debora Laker
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Rostock, Germany
| | - Frederik Tolle
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Rostock, Germany
| | - Michael Stegen
- Department of Neurosurgery, University of Freiburg, Germany
| | - Marco Heerdegen
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Rostock, Germany.
| | - Jakob Wolfart
- Oscar Langendorff Institute of Physiology, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
6
|
Bausch AE, Ehinger R, Straubinger J, Zerfass P, Nann Y, Lukowski R. Loss of Sodium-Activated Potassium Channel Slack and FMRP Differentially Affect Social Behavior in Mice. Neuroscience 2018; 384:361-374. [DOI: 10.1016/j.neuroscience.2018.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
|
7
|
Smith CO, Wang YT, Nadtochiy SM, Miller JH, Jonas EA, Dirksen RT, Nehrke K, Brookes PS. Cardiac metabolic effects of K Na1.2 channel deletion and evidence for its mitochondrial localization. FASEB J 2018; 32:fj201800139R. [PMID: 29863912 PMCID: PMC6181635 DOI: 10.1096/fj.201800139r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022]
Abstract
Controversy surrounds the molecular identity of mitochondrial K+ channels that are important for protection against cardiac ischemia-reperfusion injury. Although KNa1.2 (sodium-activated potassium channel encoded by Kcn2) is necessary for cardioprotection by volatile anesthetics, electrophysiological evidence for a channel of this type in mitochondria is lacking. The endogenous physiological role of a potential mito-KNa1.2 channel is also unclear. In this study, single channel patch-clamp of 27 independent cardiac mitochondrial inner membrane (mitoplast) preparations from wild-type (WT) mice yielded 6 channels matching the known ion sensitivity, ion selectivity, pharmacology, and conductance properties of KNa1.2 (slope conductance, 138 ± 1 pS). However, similar experiments on 40 preparations from Kcnt2-/- mice yielded no such channels. The KNa opener bithionol uncoupled respiration in WT but not Kcnt2-/- cardiomyocytes. Furthermore, when oxidizing only fat as substrate, Kcnt2-/- cardiomyocytes and hearts were less responsive to increases in energetic demand. Kcnt2-/- mice also had elevated body fat, but no baseline differences in the cardiac metabolome. These data support the existence of a cardiac mitochondrial KNa1.2 channel, and a role for cardiac KNa1.2 in regulating metabolism under conditions of high energetic demand.-Smith, C. O., Wang, Y. T., Nadtochiy, S. M., Miller, J. H., Jonas, E. A., Dirksen, R. T., Nehrke, K., Brookes, P. S. Cardiac metabolic effects of KNa1.2 channel deletion and evidence for its mitochondrial localization.
Collapse
Affiliation(s)
- Charles O. Smith
- Department of Biochemistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Yves T. Wang
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Sergiy M. Nadtochiy
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - James H. Miller
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Elizabeth A. Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Keith Nehrke
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Paul S. Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
8
|
Tejada MA, Hashem N, Calloe K, Klaerke DA. Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes. PLoS One 2017; 12:e0169914. [PMID: 28222129 PMCID: PMC5319697 DOI: 10.1371/journal.pone.0169914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/22/2016] [Indexed: 12/16/2022] Open
Abstract
Slick and Slack high-conductance K+ channels are found in the CNS, kidneys, pancreas, among other organs, where they play an important role in cell excitability as well as in ion transport processes. They are both activated by Na+ and Cl- but show a differential regulation by cell volume changes. Slick has been shown to be regulated by cell volume changes, whereas Slack is insensitive. α-subunits of these channels form homomeric as well as heteromeric channels. It is the aim of this work to explore whether the subunit composition of the Slick/Slack heteromeric channel affects the response to osmotic challenges. In order to provide with the adequate water permeability to the cell membrane of Xenopus laevis oocytes, mRNA of aquaporin 1 was co-expressed with homomeric or heteromeric Slick and Slack α-subunits. Oocytes were superfused with hypotonic or hypertonic buffers and changes in currents were measured by two-electrode voltage clamp. This work presents the first heteromeric K+ channel with a characteristic graded sensitivity to small and fast changes in cell volume. Our results show that the cell volume sensitivity of Slick/Slack heteromeric channels is dependent on the number of volume sensitive Slick α-subunits in the tetrameric channels, giving rise to graded cell volume sensitivity. Regulation of the subunit composition of a channel may constitute a novel mechanism to determine volume sensitivity of cells.
Collapse
Affiliation(s)
- Maria A. Tejada
- Department of Physiology, IKVH, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej, Frederiksberg C, Denmark
| | - Nadia Hashem
- Department of Physiology, IKVH, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej, Frederiksberg C, Denmark
| | - Kirstine Calloe
- Department of Physiology, IKVH, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej, Frederiksberg C, Denmark
| | - Dan A. Klaerke
- Department of Physiology, IKVH, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej, Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
9
|
Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev 2017; 69:1-11. [PMID: 28267675 PMCID: PMC11060434 DOI: 10.1124/pr.116.012864] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Richard W Aldrich
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - K George Chandy
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Stephan Grissmer
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Aguan D Wei
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Heike Wulff
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| |
Collapse
|
10
|
Giese MH, Gardner A, Hansen A, Sanguinetti MC. Molecular mechanisms of Slo2 K + channel closure. J Physiol 2016; 595:2321-2336. [PMID: 27682982 DOI: 10.1113/jp273225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/20/2016] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Intracellular Na+ -activated Slo2 potassium channels are in a closed state under normal physiological conditions, although their mechanisms of ion permeation gating are not well understood. A cryo-electron microscopy structure of Slo2.2 suggests that the ion permeation pathway of these channels is closed by a single constriction of the inner pore formed by the criss-crossing of the cytoplasmic ends of the S6 segments (the S6 bundle crossing) at a conserved Met residue. Functional characterization of mutant Slo2 channels suggests that hydrophobic interactions between Leu residues in the upper region of the S6 segments contribute to stabilizing the inner pore in a non-conducting state. Mutation of the conserved Met residues in the S6 segments to the negatively-charged Glu did not induce constitutive opening of Slo2.1 or Slo2.2, suggesting that ion permeation of Slo2 channels is not predominantly gated by the S6 bundle crossing. ABSTRACT Large conductance K+ -selective Slo2 channels are in a closed state unless activated by elevated [Na+ ]i . Our previous studies suggested that the pore helix/selectivity filter serves as the activation gate in Slo2 channels. In the present study, we evaluated two other potential mechanisms for stabilization of Slo2 channels in a closed state: (1) dewetting and collapse of the inner pore (hydrophobic gating) and (2) constriction of the inner pore by tight criss-crossing of the cytoplasmic ends of the S6 α-helical segments. Slo2 channels contain two conserved Leu residues in each of the four S6 segments that line the inner pore region nearest the bottom of the selectivity filter. To evaluate the potential role of these residues in hydrophobic gating, Leu267 and Leu270 in human Slo2.1 were each replaced by 15 different residues. The relative conductance of mutant channels was highly dependent on hydrophilicity and volume of the amino acid substituted for Leu267 and was maximal with L267H. Consistent with their combined role in hydrophobic gating, replacement of both Leu residues with the isosteric but polar residue Asn (L267N/L270N) stabilized channels in a fully open state. In a recent cryo-electron microscopy structure of chicken Slo2.2, the ion permeation pathway of the channel is closed by a constriction of the inner pore formed by criss-crossing of the S6 segments at a conserved Met. Inconsistent with the S6 segment crossing forming the activation gate, replacement of the homologous Met residues in human Slo2.1 or Slo2.2 with the negatively-charged Glu did not induce constitutive channel opening.
Collapse
Affiliation(s)
- M Hunter Giese
- Nora Eccles Harrison Cardiovascular Research & Training Institute
| | - Alison Gardner
- Nora Eccles Harrison Cardiovascular Research & Training Institute
| | - Angela Hansen
- Nora Eccles Harrison Cardiovascular Research & Training Institute
| | - Michael C Sanguinetti
- Nora Eccles Harrison Cardiovascular Research & Training Institute.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Tang QY, Zhang FF, Xu J, Wang R, Chen J, Logothetis DE, Zhang Z. Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. Cell Rep 2015; 14:129-139. [PMID: 26725113 DOI: 10.1016/j.celrep.2015.12.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/11/2015] [Accepted: 11/23/2015] [Indexed: 01/07/2023] Open
Abstract
Twelve sodium-activated potassium channel (KCNT1, Slack) genetic mutants have been identified from severe early-onset epilepsy patients. The changes in biophysical properties of these mutants and the underlying mechanisms causing disease remain elusive. Here, we report that seven of the 12 mutations increase, whereas one mutation decreases, the channel's sodium sensitivity. Two of the mutants exhibit channel over-activity only when the intracellular Na(+) ([Na(+)]i) concentration is ∼80 mM. In contrast, single-channel data reveal that all 12 mutants increase the maximal open probability (Po). We conclude that these mutant channels lead to channel over-activity predominantly by increasing the ability of sodium binding to activate the channel, which is indicated by its maximal Po. The sodium sensitivity of these epilepsy causing mutants probably determines the [Na(+)]i concentration at which these mutants exert their pathological effects.
Collapse
Affiliation(s)
- Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Ran Wang
- School of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Jian Chen
- School of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Diomedes E Logothetis
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
12
|
Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain. Biochem Biophys Rep 2015; 4:291-298. [PMID: 29124216 PMCID: PMC5669359 DOI: 10.1016/j.bbrep.2015.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/18/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.
Collapse
|
13
|
Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels. PLoS One 2014; 9:e110833. [PMID: 25347289 PMCID: PMC4210196 DOI: 10.1371/journal.pone.0110833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/05/2014] [Indexed: 01/10/2023] Open
Abstract
Slick (Slo2.1) and Slack (Slo2.2) channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl− and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control) by cell swelling and inhibited (57% of control) by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.
Collapse
|
14
|
Abstract
The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of non-selective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function.
Collapse
|
15
|
Markham MR, Kaczmarek LK, Zakon HH. A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude. J Neurophysiol 2013; 109:1713-23. [PMID: 23324315 DOI: 10.1152/jn.00875.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the ionic mechanisms that allow dynamic regulation of action potential (AP) amplitude as a means of regulating energetic costs of AP signaling. Weakly electric fish generate an electric organ discharge (EOD) by summing the APs of their electric organ cells (electrocytes). Some electric fish increase AP amplitude during active periods or social interactions and decrease AP amplitude when inactive, regulated by melanocortin peptide hormones. This modulates signal amplitude and conserves energy. The gymnotiform Eigenmannia virescens generates EODs at frequencies that can exceed 500 Hz, which is energetically challenging. We examined how E. virescens meets that challenge. E. virescens electrocytes exhibit a voltage-gated Na(+) current (I(Na)) with extremely rapid recovery from inactivation (τ(recov) = 0.3 ms) allowing complete recovery of Na(+) current between APs even in fish with the highest EOD frequencies. Electrocytes also possess an inwardly rectifying K(+) current and a Na(+)-activated K(+) current (I(KNa)), the latter not yet identified in any gymnotiform species. In vitro application of melanocortins increases electrocyte AP amplitude and the magnitudes of all three currents, but increased I(KNa) is a function of enhanced Na(+) influx. Numerical simulations suggest that changing I(Na) magnitude produces corresponding changes in AP amplitude and that K(Na) channels increase AP energy efficiency (10-30% less Na(+) influx/AP) over model cells with only voltage-gated K(+) channels. These findings suggest the possibility that E. virescens reduces the energetic demands of high-frequency APs through rapidly recovering Na(+) channels and the novel use of KNa channels to maximize AP amplitude at a given Na(+) conductance.
Collapse
Affiliation(s)
- Michael R Markham
- Section of Neurobiology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | | | | |
Collapse
|