1
|
Miyachi Y, Miyazawa T, Ogawa Y. HNF1A Mutations and Beta Cell Dysfunction in Diabetes. Int J Mol Sci 2022; 23:ijms23063222. [PMID: 35328643 PMCID: PMC8948720 DOI: 10.3390/ijms23063222] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/26/2022] Open
Abstract
Understanding the genetic factors of diabetes is essential for addressing the global increase in type 2 diabetes. HNF1A mutations cause a monogenic form of diabetes called maturity-onset diabetes of the young (MODY), and HNF1A single-nucleotide polymorphisms are associated with the development of type 2 diabetes. Numerous studies have been conducted, mainly using genetically modified mice, to explore the molecular basis for the development of diabetes caused by HNF1A mutations, and to reveal the roles of HNF1A in multiple organs, including insulin secretion from pancreatic beta cells, lipid metabolism and protein synthesis in the liver, and urinary glucose reabsorption in the kidneys. Recent studies using human stem cells that mimic MODY have provided new insights into beta cell dysfunction. In this article, we discuss the involvement of HNF1A in beta cell dysfunction by reviewing previous studies using genetically modified mice and recent findings in human stem cell-derived beta cells.
Collapse
|
2
|
Sato Y, Rahman MM, Haneda M, Tsuyama T, Mizumoto T, Yoshizawa T, Kitamura T, Gonzalez FJ, Yamamura KI, Yamagata K. HNF1α controls glucagon secretion in pancreatic α-cells through modulation of SGLT1. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165898. [DOI: 10.1016/j.bbadis.2020.165898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
|
3
|
Mathur R, Hui Q, Huang Y, Gwinn M, So-Armah K, Freiberg MS, Justice AC, Xu K, Marconi VC, Sun YV. DNA Methylation Markers of Type 2 Diabetes Mellitus Among Male Veterans With or Without Human Immunodeficiency Virus Infection. J Infect Dis 2020; 219:1959-1962. [PMID: 30649532 DOI: 10.1093/infdis/jiz023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modifications such as DNA methylation are associated with both human immunodeficiency virus (HIV) infection and type 2 diabetes mellitus (T2DM). We investigated epigenetic associations with T2DM according to HIV infection status and assessed interaction effects among 681 male participants of the Veterans Aging Cohort Study. Methylation at previously reported sites, cg1963031 (TXNIP), cg18181703 (SOCS3), and cg09152259 (PROC), was significantly associated with T2DM in HIV-infected individuals. We identified 3 novel associations with suggestive statistical significance: cg1231141 (ADAMTS2), cg19534769 (HGFAC), and cg13163919 (TLE3). Suggestive interaction with HIV infection status was found at cg17862404 (TSC22D1). The implicated genes are involved in inflammation, pancreatic β-cell function, and T2DM pathogenesis.
Collapse
Affiliation(s)
- Raina Mathur
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta
| | - Qin Hui
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta
| | - Yunfeng Huang
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta
| | - Marta Gwinn
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta
| | - Kaku So-Armah
- Department Global Health, Emory University Rollins School of Public Health, Atlanta
| | - Matthew S Freiberg
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta
| | - Amy C Justice
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta.,Atlanta Veterans Affairs Medical Center, Georgia
| | - Ke Xu
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta.,Boston University School of Medicine, Massachusetts
| | - Vincent C Marconi
- Cardiovascular Medicine Division, Vanderbilt University School of Medicine and Tennessee Valley Healthcare System, Nashville.,Connecticut Veteran Health System, West Haven.,Department of Psychiatry, New Haven, Connecticut
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta.,Cardiovascular Medicine Division, Vanderbilt University School of Medicine and Tennessee Valley Healthcare System, Nashville.,Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
4
|
Hotta K, Kitamoto A, Kitamoto T, Ogawa Y, Honda Y, Kessoku T, Yoneda M, Imajo K, Tomeno W, Saito S, Nakajima A. Identification of differentially methylated region (DMR) networks associated with progression of nonalcoholic fatty liver disease. Sci Rep 2018; 8:13567. [PMID: 30206277 PMCID: PMC6134034 DOI: 10.1038/s41598-018-31886-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/29/2018] [Indexed: 12/11/2022] Open
Abstract
The progression of nonalcoholic fatty liver disease (NAFLD) is affected by epigenetics. We performed differentially methylated region (DMR) and co-methylation analyses to identify DMR networks associated with the progression of NAFLD. DMRs displaying differences in multiple consecutive differentially methylated CpGs between mild and advanced NAFLD were extracted. The average values of topological overlap measures for the CpG matrix combining two different DMRs were calculated and two DMR networks that strongly correlated with the stages of fibrosis were identified. The annotated genes of one network included genes involved in transcriptional regulation, cytoskeleton organization, and cellular proliferation. The annotated genes of the second network were primarily associated with metabolic pathways. The CpG methylation levels in these networks were strongly affected by age and fasting plasma glucose levels, which may be important co-regulatory factors. The methylation status of five DMRs in the second network was reversible following weight loss. Our results suggest that CpG methylation in DMR networks is regulated concomitantly via aging and hyperglycemia and plays important roles in hepatic metabolic dysfunction, fibrosis, and potential tumorigenesis, which occur during the progression of NAFLD. By controlling weight and blood glucose levels, the methylation of DMRs in the second network may be reduced.
Collapse
Affiliation(s)
- Kikuko Hotta
- Department of Medical Innovation, Osaka University Hospital, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Aya Kitamoto
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Takuya Kitamoto
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Wataru Tomeno
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
- Department of Gastroenterology, International University of Health and Welfare Atami Hospital, 13-1 Higashi Kaigancho, Atami, Shizuoka, 413-0012, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
5
|
Hals I, Ohki T, Singh R, Ma Z, Björklund A, Balasuriya C, Scholz H, Grill V. Hyperoxia reduces insulin release and induces mitochondrial dysfunction with possible implications for hyperoxic treatment of neonates. Physiol Rep 2017; 5:5/19/e13447. [PMID: 29038359 PMCID: PMC5641934 DOI: 10.14814/phy2.13447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022] Open
Abstract
We previously showed that hyperoxia in vitro negatively affects beta cells of the rat. Here, we tested for possible clinical significance as well as mitochondrial interactions by hyperoxia, using human islets (function and viability), INS‐1 832/13 cells (mitochondrial metabolism), and mouse neonates (effects in vivo). Lastly, we assessed relevant parameters in a cohort of individuals born preterm and then exposed to hyperoxia. Human islets and INS‐1 832/13 cells were exposed to 24 h of hyperoxia (90–92% oxygen). Mouse neonates were subjected to 5 days of continuous hyperoxia. Individuals born preterm were evaluated in terms of glucose homeostasis and beta cell function by HbA1c and the HOMA2 formula. In human islets, hyperoxia significantly reduced glucose‐stimulated insulin secretion by 42.2 ± 5.3% and viability assessed by MTT by 22.5 ± 5.4%. Hyperoxia down‐regulated mitochondrial complex II by 21 ± 5% and upregulated complex III by 26 ± 10.1% and complex IV by 37 ± 10.6%. Partly similar effects on mitochondrial complexes were found in hyperoxia‐exposed INS‐1 832/13 cells. Exposure to hyperoxia swiftly reduced oxygen consumption in these cells and increased mitochondrial uncoupling. Hyperoxia transiently but significantly reduced insulin release in mouse neonates. Individuals born preterm displayed higher HbA1c versus controls, as well as insulin resistance. Thus, hyperoxia exerts negative effects in vitro on human beta cells and results indicate inhibitory effects on insulin secretion in vivo in mouse neonates. Negative effects may be lessened by the demonstrated swift and profound mitochondrial adaptability. Our findings open the possibility that hyperoxia could negatively affect beta cells of preterm human neonates.
Collapse
Affiliation(s)
- Ingrid Hals
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tsuyoshi Ohki
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Rinku Singh
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Zuheng Ma
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anneli Björklund
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Chandima Balasuriya
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Endocrinology, St Olavs University Hospital, Trondheim, Norway
| | - Hanne Scholz
- Department of Transplantation Medicine, Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | - Valdemar Grill
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Department of Endocrinology, St Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
6
|
Jonasson ME, Wicklow BA, Sellers EAC, Dolinsky VW, Doucette CA. Exploring the role of the HNF-1αG319S polymorphism in β cell failure and youth-onset type 2 diabetes: Lessons from MODY and Hnf-1α-deficient animal models. Biochem Cell Biol 2015; 93:487-94. [PMID: 26176428 DOI: 10.1139/bcb-2015-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The prevalence of youth-onset type 2 diabetes (T2D) is rapidly increasing worldwide, disproportionately affecting Indigenous youth with Oji-Cree heritage from central Canada. Candidate gene screening has uncovered a novel and private polymorphism in the Oji-Cree population in the hepatocyte nuclear factor-1 alpha (HNF-1α) gene, where a highly conserved glycine residue at position 319 is changed to a serine (termed HNF-1αG319S or simply G319S). Oji-Cree youth who carry one or two copies of the "S-allele" present at diagnosis with less obesity, reduced indicators of insulin resistance, and lower plasma insulin levels at diagnosis, suggestive of a primary defect in the insulin-secreting β cells. Few studies on the impact of the HNF-1αG319S variant on β cell function have been performed to date; however, much can be learned from other clinical phenotypes of HNF-1α-deficiency, including HNF-1α mutations that cause maturity-onset diabetes of the young 3 (MODY3). In addition, evaluation of Hnf-1α-deficient murine models reveals that HNF-1α plays a central role in the regulation of insulin secretion by regulating the expression of key genes involved in β cell glucose-sensing, mitochondrial function, and the maintenance of the β cell phenotype in differentiated β cells. The overall goal of this minireview is to explore the impact of HNF-1α-deficiency on the β cell to better inform future research into the mechanisms of β cell dysfunction in Oji-Cree youth with T2D.
Collapse
Affiliation(s)
- Michael E Jonasson
- d Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg MB R3E 3P4, Canada
| | - Brandy A Wicklow
- b Department of Pediatrics and Child Health, University of Manitoba, CE-208 Childrens Hospital, 840 Sherbrook Street, Health Sciences Centre, Winnipeg, MB R3A 1S1, Canada.,d Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg MB R3E 3P4, Canada
| | - Elizabeth A C Sellers
- b Department of Pediatrics and Child Health, University of Manitoba, CE-208 Childrens Hospital, 840 Sherbrook Street, Health Sciences Centre, Winnipeg, MB R3A 1S1, Canada.,d Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg MB R3E 3P4, Canada
| | - Vernon W Dolinsky
- c Department of Pharmacology and Therapeutics, A203 Chown Bldg., 753 McDermot Avenue, University of Manitoba, Winnipeg, MB R3E 0T6, Canada.,d Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg MB R3E 3P4, Canada
| | - Christine A Doucette
- a College of Medicine, Faculty of Health Sciences, Department of Physiology & Pathophysiology, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.,d Children's Hospital Research Institute of Manitoba, 715 McDermot Avenue, Winnipeg MB R3E 3P4, Canada
| |
Collapse
|
7
|
Yamagata K. Roles of HNF1α and HNF4α in pancreatic β-cells: lessons from a monogenic form of diabetes (MODY). VITAMINS AND HORMONES 2015; 95:407-23. [PMID: 24559927 DOI: 10.1016/b978-0-12-800174-5.00016-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutations in the genes encoding hepatocyte nuclear factor (HNF)1α and HNF4α cause a monogenic form of diabetes mellitus known as maturity-onset diabetes of the young (MODY). The primary cause of MODY is an impairment of glucose-stimulated insulin secretion by pancreatic β-cells, indicating the important roles of HNF1α and HNF4α in β-cells. Large-scale genetic studies have clarified that the common variants of HNF1α and HNF4α genes are also associated with type 2 diabetes, suggesting that they are involved in the pathogenesis of both diseases. Recent experimental studies revealed that HNF1α controls both β-cell function and growth by regulating target genes such as glucose transporter 2, pyruvate kinase, collectrin, hepatocyte growth factor activator, and HNF4α. In contrast, HNF4α mainly regulates the function of β-cells. Although direct target genes of HNF4α in β-cells are largely unknown, we recently identified Anks4b as a novel target of HNF4α that regulates β-cell susceptibility to endoplasmic reticulum stress. Studies of MODY have led to a better understanding of the molecular mechanism of glucose-stimulated insulin secretion by pancreatic β-cells.
Collapse
Affiliation(s)
- Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
8
|
Ohki T, Utsu Y, Morita S, Karim MF, Sato Y, Yoshizawa T, Yamamura KI, Yamada K, Kasayama S, Yamagata K. Low serum level of high-sensitivity C-reactive protein in a Japanese patient with maturity-onset diabetes of the young type 3 (MODY3). J Diabetes Investig 2014; 5:513-6. [PMID: 25411618 PMCID: PMC4188108 DOI: 10.1111/jdi.12237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 12/23/2022] Open
Abstract
High-sensitivity C-reactive protein (hs-CRP) levels in European populations are lower in patients with maturity-onset diabetes of the young type 3 (MODY3) than in those with type 2 diabetes. hs-CRP levels have been suggested to be useful for discriminating MODY3 from type 2 diabetes. As hs-CRP levels are influenced by various factors including race and body mass index, it is worthwhile to examine whether hs-CRP can serve as a biomarker for MODY3 in Japanese. Here we describe the case of a Japanese MODY3 patient with a nonsense mutation in the HNF1A gene. Two measurements showed consistently lower hs-CRP levels (<0.05 and 0.09 mg/L) than in Japanese patients with type 1 and type 2 diabetes. Hepatic expression of Crp messenger ribonucleic acid was significantly decreased in Hnf1a knockout mice. The hs-CRP level might be a useful biomarker for MODY3 in both Japanese and European populations.
Collapse
Affiliation(s)
- Tsuyoshi Ohki
- Department of Medical Biochemistry Faculty of Life Sciences Institute of Resource Development and Analysis Kumamoto University Kumamoto Japan ; Division of Endocrinology and Metabolism Kurume University School of Medicine Kurume Japan
| | | | | | - Md Fazlul Karim
- Department of Medical Biochemistry Faculty of Life Sciences Institute of Resource Development and Analysis Kumamoto University Kumamoto Japan
| | - Yoshifumi Sato
- Department of Medical Biochemistry Faculty of Life Sciences Institute of Resource Development and Analysis Kumamoto University Kumamoto Japan
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry Faculty of Life Sciences Institute of Resource Development and Analysis Kumamoto University Kumamoto Japan
| | - Ken-Ichi Yamamura
- Division of Developmental Genetics Center for Animal Resources and Development Institute of Resource Development and Analysis Kumamoto University Kumamoto Japan
| | - Kentaro Yamada
- Division of Endocrinology and Metabolism Kurume University School of Medicine Kurume Japan
| | | | - Kazuya Yamagata
- Department of Medical Biochemistry Faculty of Life Sciences Institute of Resource Development and Analysis Kumamoto University Kumamoto Japan
| |
Collapse
|