1
|
De S, Sahu R, Palei S, Narayan Nanda L. Synthesis, SAR, and application of JQ1 analogs as PROTACs for cancer therapy. Bioorg Med Chem 2024; 112:117875. [PMID: 39178586 DOI: 10.1016/j.bmc.2024.117875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
JQ1 is a wonder therapeutic molecule that selectively inhibits the BRD4 signaling pathway and is thus widely used in the anticancer drug discovery program. Due to its unique selective BRD4 binding property, its applications are further extended in the design and synthesis of bi-functional PROTAC molecules. This BRD4 targeting PROTAC molecule selectively degrades the protein by proteolysis. There are several modifications of JQ1 known to date and extensively explored for their applications in PROTAC technology by several research groups in academia as well as industry for targeting oncogenic genes. In this review, we have covered the discovery and synthesis of the JQ1 molecule. The SAR of the JQ1 analogs will help researchers develop potent JQ1 compounds with improved inhibitory properties against malignant cells. Furthermore, we explored the potential application of JQ1 analogs in PROTAC technology. The brief history of the bromodomain family of proteins, as well as the obstacles connected with PROTAC technology, can help comprehend the context of the current research, which has the potential to improve the drug development process. Overall, this review comprehensively appraises JQ1 molecules and their prior implementation in PROTAC technology and cancer therapy.
Collapse
Affiliation(s)
- Soumik De
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, An OCC of Homi Bhabha National Institute (HBNI), Khurda, Odisha 752050, India
| | - Raghaba Sahu
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Shubhendu Palei
- Department of Chemistry, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Laxmi Narayan Nanda
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Harvard Medical School, Cambridge 02142, United States; P.G. Department of Chemistry, Government Autonomous College, Utkal University, Angul 759143, Odisha, India.
| |
Collapse
|
2
|
Lomeli C. S, Kristin B. A. Epigenetic regulation of craniofacial development and disease. Birth Defects Res 2024; 116:e2271. [PMID: 37964651 PMCID: PMC10872612 DOI: 10.1002/bdr2.2271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND The formation of the craniofacial complex relies on proper neural crest development. The gene regulatory networks (GRNs) and signaling pathways orchestrating this process have been extensively studied. These GRNs and signaling cascades are tightly regulated as alterations to any stage of neural crest development can lead to common congenital birth defects, including multiple syndromes affecting facial morphology as well as nonsyndromic facial defects, such as cleft lip with or without cleft palate. Epigenetic factors add a hierarchy to the regulation of transcriptional networks and influence the spatiotemporal activation or repression of specific gene regulatory cascades; however less is known about their exact mechanisms in controlling precise gene regulation. AIMS In this review, we discuss the role of epigenetic factors during neural crest development, specifically during craniofacial development and how compromised activities of these regulators contribute to congenital defects that affect the craniofacial complex.
Collapse
Affiliation(s)
- Shull Lomeli C.
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Artinger Kristin B.
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
3
|
Martella N, Pensabene D, Varone M, Colardo M, Petraroia M, Sergio W, La Rosa P, Moreno S, Segatto M. Bromodomain and Extra-Terminal Proteins in Brain Physiology and Pathology: BET-ing on Epigenetic Regulation. Biomedicines 2023; 11:biomedicines11030750. [PMID: 36979729 PMCID: PMC10045827 DOI: 10.3390/biomedicines11030750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BET proteins function as histone code readers of acetylated lysins that determine the positive regulation in transcription of genes involved in cell cycle progression, differentiation, inflammation, and many other pathways. In recent years, thanks to the development of BET inhibitors, interest in this protein family has risen for its relevance in brain development and function. For example, experimental evidence has shown that BET modulation affects neuronal activity and the expression of genes involved in learning and memory. In addition, BET inhibition strongly suppresses molecular pathways related to neuroinflammation. These observations suggest that BET modulation may play a critical role in the onset and during the development of diverse neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease, fragile X syndrome, and Rett syndrome. In this review article, we summarize the most recent evidence regarding the involvement of BET proteins in brain physiology and pathology, as well as their pharmacological potential as targets for therapeutic purposes.
Collapse
Affiliation(s)
- Noemi Martella
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Daniele Pensabene
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Michela Varone
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Mayra Colardo
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Michele Petraroia
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - William Sergio
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, Sapienza University of Rome, via dei Marsi 78, 00185 Rome, Italy
| | - Sandra Moreno
- Department of Science, University Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Laboratory of Neurodevelopment, Neurogenetics and Neuromolecular Biology, IRCCS Santa Lucia Foundation, 64 via del Fosso di Fiorano, 00179 Rome, Italy
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Italy
- Correspondence:
| |
Collapse
|
4
|
Guo J, Zheng Q, Peng Y. BET proteins: Biological functions and therapeutic interventions. Pharmacol Ther 2023; 243:108354. [PMID: 36739915 DOI: 10.1016/j.pharmthera.2023.108354] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Bromodomain and extra-terminal (BET) family member proteins (BRD2, BRD3, BRD4 and BRDT) play a pivotal role in interpreting the epigenetic information of histone Kac modification, thus controlling gene expression, remodeling chromatin structures and avoid replicative stress-induced DNA damages. Abnormal activation of BET proteins is tightly correlated to various human diseases, including cancer. Therefore, BET bromodomain inhibitors (BBIs) were considered as promising therapeutics to treat BET-related diseases, raising >70 clinical trials in the past decades. Despite preliminary effects achieved, drug resistance and adverse events represent two major challenges for current BBIs development. In this review, we will introduce the biological functions of BET proteins in both physiological and pathological conditions; and summarize the progress in current BBI drug development. Moreover, we will also discuss the major challenges in the front of BET inhibitor development and provide rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingquan Zheng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
5
|
Zerio CJ, Sivinski J, Wijeratne EMK, Xu YM, Ngo DT, Ambrose AJ, Villa-Celis L, Ghadirian N, Clarkson MW, Zhang DD, Horton NC, Gunatilaka AAL, Fromme R, Chapman E. Physachenolide C is a Potent, Selective BET Inhibitor. J Med Chem 2023; 66:913-933. [PMID: 36577036 DOI: 10.1021/acs.jmedchem.2c01770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A pulldown using a biotinylated natural product of interest in the 17β-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), identified the bromodomain and extra-terminal domain (BET) family of proteins (BRD2, BRD3, and BRD4), readers of acetyl-lysine modifications and regulators of gene transcription, as potential cellular targets. BROMOscan bromodomain profiling and biochemical assays support PCC as a BET inhibitor with increased selectivity for bromodomain (BD)-1 of BRD3 and BRD4, and X-ray crystallography and NMR studies uncovered specific contacts that underlie the potency and selectivity of PCC toward BRD3-BD1 over BRD3-BD2. PCC also displays characteristics of a molecular glue, facilitating proteasome-mediated degradation of BRD3 and BRD4. Finally, PCC is more potent than other withanolide analogues and gold-standard pan-BET inhibitor (+)-JQ1 in cytotoxicity assays across five prostate cancer (PC) cell lines regardless of androgen receptor (AR)-signaling status.
Collapse
Affiliation(s)
- Christopher J Zerio
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Jared Sivinski
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - E M Kithsiri Wijeratne
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Ya-Ming Xu
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Duc T Ngo
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Andrew J Ambrose
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Luis Villa-Celis
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Niloofar Ghadirian
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721, United States
| | - Michael W Clarkson
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell Street, Tucson, Arizona 85719, United States
| | - Donna D Zhang
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721, United States
| | - A A Leslie Gunatilaka
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Raimund Fromme
- School of Molecular Sciences, Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| |
Collapse
|
6
|
Hu W, Fang H, Peng Y, Li L, Liu S, Liao H, Tang J, Yi J, Liu Q, Xu L, Wu L. Nabais Sa-de Vries syndrome in a Chinese infant associated with a novel SPOP mutation: A clinical study and genetic report. Mol Genet Genomic Med 2022; 10:e2075. [PMID: 36259278 PMCID: PMC9747555 DOI: 10.1002/mgg3.2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nabais Sa-de Vries syndrome (NSDVS) is a newly identified neurodevelopmental disorder (NDD), characterized by mutations in the SPOP gene, which encodes the speckle-type BTB/POZ protein. It is divided into two disease subtypes, according to patient facial features, which could be related to altered SPOP protein function. Few studies have documented this syndrome and little is known about its pathophysiology. Herein, we present an unexplained infant case of NDD, possibly the first Asian NSDVS case report. METHODS A 7-month-old boy presented with an enlarged head circumference, widened eye distance, and a protruding nose. Trio-whole exome sequencing of the patient's family was performed, and a variant was identified by bioinformatics analysis and further verified by Sanger sequencing. This variant was then identified by molecular dynamics analysis. Finally, a plasmid was constructed in vitro to transfect the human 293 T cells. qPCR and western blotting (WB) experiments were subsequently performed. These analyses verified the variant's transcription and protein expression. RESULTS Trio-whole exome sequencing was used to identify the SPOP mutation c.67 T > C (p.Cys23Arg). Crystal structure simulations suggest that this single-residue substitution alters hydrogen bonding with nearby residues. Analysis via qPCR and WB experiments indicated decreased mutant mRNA and protein expression levels. CONCLUSION Our findings suggest that genetic testing should be performed as soon as possible for children with NDD showing low phenotypic specificity. Prompt testing will provide more accurate diagnoses, which in turn offers evidence to assist in the formulation of rehabilitation training plans, and genetic counseling for patients' families.
Collapse
Affiliation(s)
- Wenjing Hu
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Hongjun Fang
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Yu Peng
- Pediatrics Research Institute of Hunan ProvinceHunan Children's HospitalChangshaChina
| | - Li Li
- Department of RadiologyHunan Children's HospitalChangshaChina
| | - Shulei Liu
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Hongmei Liao
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Jingwen Tang
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Jurong Yi
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Qingqing Liu
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Li Xu
- Department of NeurologyHunan Children's HospitalChangshaChina
| | - Liwen Wu
- Department of NeurologyHunan Children's HospitalChangshaChina
| |
Collapse
|
7
|
Tsume-Kajioka M, Kimura-Yoshida C, Mochida K, Ueda Y, Matsuo I. BET proteins are essential for the specification and maintenance of the epiblast lineage in mouse preimplantation embryos. BMC Biol 2022; 20:64. [PMID: 35264162 PMCID: PMC8905768 DOI: 10.1186/s12915-022-01251-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background During mammalian preimplantation development, as the fertilized egg develops and differentiates, three cell lineages become specified: trophectoderm (TE), epiblast, and primitive endoderm (PrE). Through two steps of cell fate decisions, 16-cell blastomeres develop into TE and an inner cell mass (ICM), and thereafter, the latter differentiates into pluripotent epiblast and PrE. Although bromodomain and extra-terminal domain (BET) proteins, such as BRD4, are necessary for the transcriptional activation of genes involved in the maintenance of mouse embryonic stem cells by occupying their enhancers, their roles in the development of mouse preimplantation are unknown. Results To evaluate the effect of BET protein deficiency on cell lineage formation, we cultured preimplantation embryos in the presence of JQ1, which blocks the binding of BET bromodomains to acetylated-histones. We found BET inhibition blocked the transcriptional activation of genes, such as Nanog, Otx2, and Sox2, important for the formation of the epiblast lineage in blastocysts. Expression studies with lineage-specific markers in morulae and blastocysts revealed BET proteins were essential for the specification and maintenance of the epiblast lineage but were dispensable for the formation of primarily extraembryonic TE and PrE lineages. Additional Ingenuity Pathway Analysis and expression studies with a transcriptionally active form of signal transducer and activator of the transcription 3 (STAT3) suggested BET-dependent activation was partly associated with the STAT3-dependent pathway to maintain the epiblast lineage. To identify BET proteins involved in the formation of the epiblast lineage, we analyzed mutant embryos deficient in Brd4, Brd2, and double mutants. Abolishment of NANOG-positive epiblast cells was only evident in Brd4/Brd2 double-deficient morulae. Thus, the phenotype of JQ1-treated embryos is reproduced not by a Brd4- or Brd2-single deficiency, but only Brd4/Brd2-double deficiency, demonstrating the redundant roles of BRD2 and BRD4 in the specification of the epiblast lineage. Conclusions BET proteins are essential to the specification and maintenance of the epiblast lineage by activating lineage-specific core transcription factors during mouse preimplantation development. Among BET proteins, BRD4 plays a central role and BRD2 a complementary role in the specification and maintenance of epiblast lineages. Additionally, BET-dependent maintenance of the epiblast lineage may be partly associated with the STAT3-dependent pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01251-0.
Collapse
Affiliation(s)
- Mami Tsume-Kajioka
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Kyoko Mochida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Yoko Ueda
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan. .,Department of Pediatric and Neonatal-Perinatal Research, Osaka Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Cai M, Dong J, Li H, Qin JJ. Recent Developments in Targeting Bromodomain and Extra Terminal Domain Proteins for Cancer Therapeutics. Curr Med Chem 2022; 29:4391-4409. [PMID: 35152859 DOI: 10.2174/0929867329666220211091806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Bromodomain and extra-terminal domain (BET) proteins are a well-studied family of proteins associated with a variety of diseases including malignancy and chronic inflammation. Currently, numerous pan BET inhibitors have exhibited potent efficacy in several in vivo preclinical models and entered clinical trials, but have largely stalled due to their adverse events. Therefore, the development of new selective inhibitors and PROTACs (Proteolysis Targeting Chimeras) targeting BET is urgently needed. In the present review, we summarize the BET protein structure, the recent development of BET inhibitors, focusing mainly on BRD4-selective inhibitors and PROTAC degraders.
Collapse
Affiliation(s)
- Maohua Cai
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Jinyun Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Haobin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Jiang-Jiang Qin
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| |
Collapse
|
9
|
Branigan GL, Olsen KS, Burda I, Haemmerle MW, Ho J, Venuto A, D’Antonio ND, Briggs IE, DiBenedetto AJ. Zebrafish Paralogs brd2a and brd2b Are Needed for Proper Circulatory, Excretory and Central Nervous System Formation and Act as Genetic Antagonists during Development. J Dev Biol 2021; 9:jdb9040046. [PMID: 34842711 PMCID: PMC8629005 DOI: 10.3390/jdb9040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Brd2 belongs to the BET family of epigenetic transcriptional co-regulators that act as adaptor-scaffolds for the assembly of chromatin-modifying complexes and other factors at target gene promoters. Brd2 is a protooncogene and candidate gene for juvenile myoclonic epilepsy in humans, a homeobox gene regulator in Drosophila, and a maternal-zygotic factor and cell death modulator that is necessary for normal development of the vertebrate central nervous system (CNS). As two copies of Brd2 exist in zebrafish, we use antisense morpholino knockdown to probe the role of paralog Brd2b, as a comparative study to Brd2a, the ortholog of human Brd2. A deficiency in either paralog results in excess cell death and dysmorphology of the CNS, whereas only Brd2b deficiency leads to loss of circulation and occlusion of the pronephric duct. Co-knockdown of both paralogs suppresses single morphant defects, while co-injection of morpholinos with paralogous RNA enhances them, suggesting novel genetic interaction with functional antagonism. Brd2 diversification includes paralog-specific RNA variants, a distinct localization of maternal factors, and shared and unique spatiotemporal expression, providing unique insight into the evolution and potential functions of this gene.
Collapse
Affiliation(s)
- Gregory L. Branigan
- Medical Scientist Training Program, Center for Innovation in Brain Science, Department of Pharmacology, University of Arizona College of Medicine-Tucson, 1501 N Campbell Ave., Tucson, AZ 85724, USA;
| | - Kelly S. Olsen
- Biological and Biomedical Sciences Program, Department of Microbiology and Immunology, University of North Carolina School of Medicine-Chapel Hill, 321 S Columbia St., Chapel Hill, NC 27516, USA;
| | - Isabella Burda
- Department of Molecular Biology and Genetics, Weill Institute for Cell & Molecular Biology, Cornell University, 239 Weill Hall, Ithaca, NY 14853, USA;
| | - Matthew W. Haemmerle
- Institute for Diabetes, Obesity, and Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Room 12-124, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Jason Ho
- Robert Wood Johnson Medical School, Rutgers University, Clinical Academic Building (CAB), 125 Paterson St., New Brunswick, NJ 08901, USA;
| | - Alexandra Venuto
- Department of Biology, East Carolina University, Greenville, NC 27858, USA;
| | - Nicholas D. D’Antonio
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, 1025 Walnut St. #100, Philadelphia, PA 19107, USA;
| | - Ian E. Briggs
- Department of Biology, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA;
| | - Angela J. DiBenedetto
- Department of Biology, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA;
- Correspondence:
| |
Collapse
|
10
|
Abstract
BACKGROUND Bromodomain and extra-terminal (BET) proteins are epigenetic readers that bind to acetylated lysines of histones and regulate gene transcription. BET protein family members mediate the expression of various oncogenic drivers in ovarian cancer, such as the MYC and Neuregulin 1 (NRG1) genes. BRD4, the most thoroughly studied member of the BET family, is amplified in a significant subset of high-grade serous carcinomas (HGSC) of the ovary. It has been reported that BET inhibitors can attenuate the proliferation and dissemination of ovarian cancer cells by inhibiting oncogenic pathways, such as the FOXM1 and JAK/STAT pathways. BET inhibition can re-sensitize resistant ovarian cancer cells to already approved anticancer agents, including cisplatin and PARP inhibitors. This synergism was also confirmed in vivo in animal models. These and other preclinical results provide a promising basis for the application of BET inhibitors in ovarian cancer treatment. Currently, Phase I/II clinical trials explore the safety and efficacy profiles of BET inhibitors in various solid tumors, including ovarian tumors. Here, we review current knowledge on the molecular effects and preclinical activities of BET inhibitors in ovarian tumors. CONCLUSIONS BET proteins have emerged as new druggable targets for ovarian cancer. BET inhibitors may enhance antitumor activity when co-administered with conventional treatment regimens. Results from ongoing Phase I/II studies are anticipated to confirm this notion.
Collapse
|
11
|
Proteolysis-targeting chimeras mediate the degradation of bromodomain and extra-terminal domain proteins. Future Med Chem 2020; 12:1669-1683. [PMID: 32893690 DOI: 10.4155/fmc-2017-0264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bromodomain and extra-terminal domain (BET) protein family plays an important role in regulating gene transcription preferentially at super-enhancer regions and has been involved with several types of cancers as a candidate. Up to now, there are 16 pan-BET inhibitors in clinical trials, however, most of them have undesirable off-target and side-effects. The proteolysis-targeting chimeras technology through a heterobifunctional molecule to link the target protein and E3 ubiquitin ligase, causes the target's ubiquitination and subsequent degradation. By using this technology, the heterobifunctional small-molecule BET degraders can induce BET protein degradation. In this review, we discuss the advances in the drug discovery and development of BET-targeting proteolysis-targeting chimeras.
Collapse
|
12
|
Basu A, Mestres I, Sahu SK, Tiwari N, Khongwir B, Baumgart J, Singh A, Calegari F, Tiwari VK. Phf21b imprints the spatiotemporal epigenetic switch essential for neural stem cell differentiation. Genes Dev 2020; 34:1190-1209. [PMID: 32820037 PMCID: PMC7462064 DOI: 10.1101/gad.333906.119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Cerebral cortical development in mammals involves a highly complex and organized set of events including the transition of neural stem and progenitor cells (NSCs) from proliferative to differentiative divisions to generate neurons. Despite progress, the spatiotemporal regulation of this proliferation-differentiation switch during neurogenesis and the upstream epigenetic triggers remain poorly known. Here we report a cortex-specific PHD finger protein, Phf21b, which is highly expressed in the neurogenic phase of cortical development and gets induced as NSCs begin to differentiate. Depletion of Phf21b in vivo inhibited neuronal differentiation as cortical progenitors lacking Phf21b were retained in the proliferative zones and underwent faster cell cycles. Mechanistically, Phf21b targets the regulatory regions of cell cycle promoting genes by virtue of its high affinity for monomethylated H3K4. Subsequently, Phf21b recruits the lysine-specific demethylase Lsd1 and histone deacetylase Hdac2, resulting in the simultaneous removal of monomethylation from H3K4 and acetylation from H3K27, respectively. Intriguingly, mutations in the Phf21b locus associate with depression and mental retardation in humans. Taken together, these findings establish how a precisely timed spatiotemporal expression of Phf21b creates an epigenetic program that triggers neural stem cell differentiation during cortical development.
Collapse
Affiliation(s)
- Amitava Basu
- Institute of Molecular Biology, 55128 Mainz, Germany
| | - Iván Mestres
- Center for Regenerative Therapies Dresden (CRTD), School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Neha Tiwari
- Institute of Physiological Chemistry, University Medical Center Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | | | - Jan Baumgart
- Translational Animal Research Center (TARC), University Medical Centre, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, United Kingdom
| | - Federico Calegari
- Center for Regenerative Therapies Dresden (CRTD), School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queens University Belfast, Belfast BT9 7BL, United Kingdom
| |
Collapse
|
13
|
Wisniewski A, Georg GI. BET proteins: Investigating BRDT as a potential target for male contraception. Bioorg Med Chem Lett 2020; 30:126958. [PMID: 32019712 PMCID: PMC7023680 DOI: 10.1016/j.bmcl.2020.126958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 02/06/2023]
Abstract
While many contraception options are available for women, birth control methods for men are limited to condoms and vasectomy. Past research into male contraceptives has focused on hormonal options but the associated side effects have thus far precluded this method from reaching the market. Non-hormonal male contraceptives and vas occlusion have also been explored, but to date no method has progressed past clinical testing. Recent interest in epigenetic research has unveiled a new potential non-hormonal male contraceptive target: the testis-specific bromodomain BRDT. Potent inhibitors for bromodomain-containing proteins are described in the literature, but a BRDT-specific compound has yet to be designed, prepared and tested. The high similarity between bromodomain proteins of the BET family makes development of selective and specific inhibitors both difficult and necessary. Selective inhibition of BRDT by a small molecule is an exciting new target in the search for a new non-hormonal male contraceptive.
Collapse
Affiliation(s)
- Andrea Wisniewski
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN 55414, United States
| | - Gunda I Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN 55414, United States.
| |
Collapse
|
14
|
De Novo Variants in SPOP Cause Two Clinically Distinct Neurodevelopmental Disorders. Am J Hum Genet 2020; 106:405-411. [PMID: 32109420 DOI: 10.1016/j.ajhg.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 02/05/2020] [Indexed: 12/20/2022] Open
Abstract
Recurrent somatic variants in SPOP are cancer specific; endometrial and prostate cancers result from gain-of-function and dominant-negative effects toward BET proteins, respectively. By using clinical exome sequencing, we identified six de novo pathogenic missense variants in SPOP in seven individuals with developmental delay and/or intellectual disability, facial dysmorphisms, and congenital anomalies. Two individuals shared craniofacial dysmorphisms, including congenital microcephaly, that were strikingly different from those of the other five individuals, who had (relative) macrocephaly and hypertelorism. We measured the effect of SPOP variants on BET protein amounts in human Ishikawa endometrial cancer cells and patient-derived cell lines because we hypothesized that variants would lead to functional divergent effects on BET proteins. The de novo variants c.362G>A (p.Arg121Gln) and c. 430G>A (p.Asp144Asn), identified in the first two individuals, resulted in a gain of function, and conversely, the c.73A>G (p.Thr25Ala), c.248A>G (p.Tyr83Cys), c.395G>T (p.Gly132Val), and c.412C>T (p.Arg138Cys) variants resulted in a dominant-negative effect. Our findings suggest that these opposite functional effects caused by the variants in SPOP result in two distinct and clinically recognizable syndromic forms of intellectual disability with contrasting craniofacial dysmorphisms.
Collapse
|
15
|
Letson C, Padron E. Non-canonical transcriptional consequences of BET inhibition in cancer. Pharmacol Res 2019; 150:104508. [PMID: 31698067 DOI: 10.1016/j.phrs.2019.104508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/12/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
Inhibition of the bromo and extra-terminal domain (BET) protein family in preclinical studies has demonstrated that BET proteins are critical for cancer progression and important therapeutic targets. Downregulation of the MYC oncogene, CDK6, BCL2 and FOSL1 are just a few examples of the effects of BET inhibitors that can lead to cell cycle arrest and apoptosis in cancer cells. However, BET inhibitors have had little success in the clinic as a single agent, and there are an increasing number of reports of resistance to BET inhibition emerging after sustained treatment of cancer cells in vitro. Here we summarize the non-canonical consequences of BET inhibition in cancer, and discuss how these may both lead to resistance and inform rational combinations that could greatly enhance the clinical application of these inhibitors.
Collapse
Affiliation(s)
- Christopher Letson
- Moffitt Cancer Center: 12902 USF Magnolia Drive, Tampa, FL 33612, United States.
| | - Eric Padron
- Moffitt Cancer Center: 12902 USF Magnolia Drive, Tampa, FL 33612, United States.
| |
Collapse
|
16
|
Gilsoul M, Grisar T, Delgado-Escueta AV, de Nijs L, Lakaye B. Subtle Brain Developmental Abnormalities in the Pathogenesis of Juvenile Myoclonic Epilepsy. Front Cell Neurosci 2019; 13:433. [PMID: 31611775 PMCID: PMC6776584 DOI: 10.3389/fncel.2019.00433] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
Juvenile myoclonic epilepsy (JME), a lifelong disorder that starts during adolescence, is the most common of genetic generalized epilepsy syndromes. JME is characterized by awakening myoclonic jerks and myoclonic-tonic-clonic (m-t-c) grand mal convulsions. Unfortunately, one third of JME patients have drug refractory m-t-c convulsions and these recur in 70-80% who attempt to stop antiepileptic drugs (AEDs). Behavioral studies documented impulsivity, but also impairment of executive functions relying on organization and feedback, which points to prefrontal lobe dysfunction. Quantitative voxel-based morphometry (VBM) revealed abnormalities of gray matter (GM) volumes in cortical (frontal and parietal) and subcortical structures (thalamus, putamen, and hippocampus). Proton magnetic resonance spectroscopy (MRS) found evidence of dysfunction of thalamic neurons. White matter (WM) integrity was disrupted in corpus callosum and frontal WM tracts. Magnetic resonance imaging (MRI) further unveiled anomalies in both GM and WM structures that were already present at the time of seizure onset. Aberrant growth trajectories of brain development occurred during the first 2 years of JME diagnosis. Because of genetic origin, disease causing variants were sought, first by positional cloning, and most recently, by next generation sequencing. To date, only six genes harboring pathogenic variants (GABRA1, GABRD, EFHC1, BRD2, CASR, and ICK) with Mendelian and complex inheritance and covering a limited proportion of the world population, are considered as major susceptibility alleles for JME. Evidence on the cellular role, developmental and cell-type expression profiles of these six diverse JME genes, point to their pathogenic variants driving the first steps of brain development when cell division, expansion, axial, and tangential migration of progenitor cells (including interneuron cortical progenitors) sculpture subtle alterations in brain networks and microcircuits during development. These alterations may explain "microdysgenesis" neuropathology, impulsivity, executive dysfunctions, EEG polyspike waves, and awakening m-t-c convulsions observed in JME patients.
Collapse
Affiliation(s)
- Maxime Gilsoul
- GIGA-Stem Cells, University of Liège, Liège, Belgium
- GIGA-Neurosciences, University of Liège, Liège, Belgium
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Thierry Grisar
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Antonio V. Delgado-Escueta
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Epilepsy Genetics/Genomics Lab, Neurology and Research Services, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Laurence de Nijs
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, Netherlands
| | - Bernard Lakaye
- GIGA-Stem Cells, University of Liège, Liège, Belgium
- GIGA-Neurosciences, University of Liège, Liège, Belgium
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Slivka PF, Hsieh CL, Lipovsky A, Pratt SD, Locklear J, Namovic MT, McDonald HA, Wetter J, Edelmayer R, Hu M, Murphy E, Domanus M, Lu C, Duggan R, King J, Scott VE, Donnelly-Roberts D, Slavin A, Gopalakrishnan S, Chung N, Goedken ER. Small Molecule and Pooled CRISPR Screens Investigating IL17 Signaling Identify BRD2 as a Novel Contributor to Keratinocyte Inflammatory Responses. ACS Chem Biol 2019; 14:857-872. [PMID: 30938974 DOI: 10.1021/acschembio.8b00260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Interleukin-17A (IL17A) plays a critical role in the development of numerous autoimmune diseases, including psoriasis. The clinical success of IL17A neutralizing biologics in psoriasis has underlined its importance as a drug discovery target. While many studies have focused on the differentiation and trafficking of IL17A producing T-helper 17 cells, less is known about IL17A-initiated signaling events in stromal and parenchymal cells leading to psoriatic phenotypes. We sought to discover signaling nodes downstream of IL17A contributing to disease pathogenesis. Using IL17A and tumor necrosis factor α (TNF) to stimulate primary human epidermal keratinocytes, we employed two different phenotypic screening approaches. First, a library of ∼22000 annotated compounds was screened for reduced secretion of the pro-inflammatory chemokine IL8. Second, a library of 729 kinases was screened in a pooled format by utilizing CRISPR-Cas9 and monitoring IL8 intracellular staining. The highest-ranking novel hits identified in both screens were the bromodomain and extra-terminal domain (BET) family proteins and bromodomain-containing protein 2 (BRD2), respectively. Comparison of BRD2, BRD3, and BRD4 silencing with siRNA and CRISPR confirmed that BRD2 was responsible for mediating IL8 production. Pan-BRD inhibitors and BRD2 knockout also reduced IL17A/TNF-mediated CXC motif chemokines 1/2/6 (CXCL1/2/6) and granulocyte colony stimulating factor (G-CSF) production. In RNA-Seq analysis, 438 IL17A/TNF dependent genes were reduced in BRD2-deficient primary keratinocytes. KEGG pathway analysis of these genes showed enrichment in TNF signaling and rheumatoid arthritis relevant genes. Moreover, a number of genes important for keratinocyte homeostasis and cornification were dysregulated in BRD2-deficient keratinocytes. In IL17A/TNF/IL22 stimulated three-dimensional organotypic raft cultures, pan-BRD inhibition reduced inflammatory factor production but elicited aberrant cornification, consistent with RNA-Seq analysis. These studies highlight a novel role for BRDs and BRD2 in particular in IL17A-mediated inflammatory signaling.
Collapse
Affiliation(s)
- Peter F. Slivka
- Discovery Dermatology & Fibrosis, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Chen-Lin Hsieh
- Genomics Research Center, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Alex Lipovsky
- Discovery Dermatology & Fibrosis, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Steven D. Pratt
- Target Enabling Science & Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - John Locklear
- Target Enabling Science & Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
- PerkinElmer Life Sciences, Waltham, Massachusetts 02451, United States
| | - Marian T. Namovic
- Target Enabling Science & Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Heath A. McDonald
- Discovery Dermatology & Fibrosis, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Joseph Wetter
- Discovery Dermatology & Fibrosis, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Rebecca Edelmayer
- Discovery Dermatology & Fibrosis, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Min Hu
- Genomics Research Center, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Erin Murphy
- Genomics Research Center, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Marc Domanus
- Genomics Research Center, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Charles Lu
- Genomics Research Center, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Ryan Duggan
- Immuno-Oncology Discovery, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Jacob King
- Discovery Dermatology & Fibrosis, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Victoria E. Scott
- Discovery Dermatology & Fibrosis, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Diana Donnelly-Roberts
- Target Enabling Science & Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Anthony Slavin
- Immunology Pharmacology, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| | - Sujatha Gopalakrishnan
- Target Enabling Science & Technology, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Namjin Chung
- Genomics Research Center, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Eric R. Goedken
- Discovery Dermatology & Fibrosis, AbbVie Bioresearch Center, Worcester, Massachusetts 01605, United States
| |
Collapse
|
18
|
Lin D, Shi Y, Hu Y, Du X, Tu G. miR‑329‑3p regulates neural stem cell proliferation by targeting E2F1. Mol Med Rep 2019; 19:4137-4146. [PMID: 30942449 PMCID: PMC6472110 DOI: 10.3892/mmr.2019.10096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022] Open
Abstract
Neural stem cells (NSCs) are a class of self‑renewing and undifferentiated progenitor cells that retain the ability to differentiate to neurons, astrocytes and oligodendrocytes. MicroRNAs (miRNAs) are small noncoding RNAs that serve crucial roles in regulating a number of cellular processes, including cell proliferation, differentiation and apoptosis. Our previous GeneChip data indicated that the expression of miR‑329‑3p was increased in neurons compared with NSCs. However, whether miRNA‑329‑3p participates in regulating NSC function remains to be elucidated. In the present study, it was identified that the expression of miR‑329‑3p was upregulated in NSCs during neuronal differentiation, whereas expression of transcription factor E2F1 (E2F1), a putative target gene of miR‑329‑3p, was downregulated. Using luciferase reporter assays, it was confirmed that miR‑329‑3p regulated E2F1 expression. As differentiation has been demonstrated to limit the proliferative capacity of NSCs, the effects of miR‑329‑3p and E2F1 modulation on NSC proliferation were examined. Forced overexpression of miR‑329‑3p or RNA‑mediated silencing of E2F1 inhibited NSC proliferation, and overexpression of miR‑329‑3p also inhibited E2F1 expression. Notably, ectopic expression of E2F1 reversed the inhibition of NSC proliferation induced by miR‑329‑3p overexpression. These results indicated that miR‑329‑3p may serve crucial roles in regulating the proliferation of NSCs, at least in part via inhibition of E2F1 expression. These data improve the understanding of the microRNA‑mRNA regulatory network that controls NSC proliferation.
Collapse
Affiliation(s)
- Dapeng Lin
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yao Shi
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yiwen Hu
- Department of Orthopedic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xiaowen Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guanjun Tu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
19
|
Wang Y, Zhao J, Cao C, Yan Y, Chen J, Feng F, Zhou N, Han S, Xu Y, Zhao J, Yan Y, Cui H. The role of E2F1-topoIIβ signaling in regulation of cell cycle exit and neuronal differentiation of human SH-SY5Y cells. Differentiation 2018; 104:1-12. [PMID: 30216786 DOI: 10.1016/j.diff.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/14/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
This study aims to test the role of E2F1-topoIIβ signaling in neuronal differentiation of SH-SY5Y cells. With retinoic acid (RA) induction, a high percentage of cells were found to be arrested at the G0/G1 phase, with decreased levels of cyclinD1, CDK4, phosphorylation status of pRb and E2F1, in addition to an elevated level of p27. The cells were shown to differentiate into neuronal phenotypes characterized by highly expressed neuronal markers, MAP2 and enriched topoIIβ, and remarkable neurite outgrowth. Exogenously forced E2F1 expression with a specific E2F1 plasmid led to suppression of topoIIβ expression and disruption of the neuronal differentiation of SH-SY5Y cells. On further examination using the ChIP assay, we found that E2F1 bound directly to the promoter region of topoIIβ, and its binding ability was inversely correlated with topoIIβ expression in response to RA induction. Thus, our findings suggest that E2F1-topoIIβ signaling may play a role in regulation of cell cycle exit and neuronal differentiation.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Junxia Zhao
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Cuili Cao
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Yongxin Yan
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Jing Chen
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Fan Feng
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Najing Zhou
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Shuo Han
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| | - Yannan Xu
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Juan Zhao
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China
| | - Yunli Yan
- Department of Cell Biology, Hebei Medical University, 050017 Hebei, PR China.
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Hebei, PR China
| |
Collapse
|
20
|
Wai DCC, Szyszka TN, Campbell AE, Kwong C, Wilkinson-White LE, Silva APG, Low JKK, Kwan AH, Gamsjaeger R, Chalmers JD, Patrick WM, Lu B, Vakoc CR, Blobel GA, Mackay JP. The BRD3 ET domain recognizes a short peptide motif through a mechanism that is conserved across chromatin remodelers and transcriptional regulators. J Biol Chem 2018; 293:7160-7175. [PMID: 29567837 PMCID: PMC5949996 DOI: 10.1074/jbc.ra117.000678] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/08/2018] [Indexed: 12/31/2022] Open
Abstract
Members of the bromodomain and extra-terminal domain (BET) family of proteins (bromodomain-containing (BRD) 2, 3, 4, and T) are widely expressed and highly conserved regulators of gene expression in eukaryotes. These proteins have been intimately linked to human disease, and more than a dozen clinical trials are currently underway to test BET-protein inhibitors as modulators of cancer. However, although it is clear that these proteins use their bromodomains to bind both histones and transcription factors bearing acetylated lysine residues, the molecular mechanisms by which BET family proteins regulate gene expression are not well defined. In particular, the functions of the other domains such as the ET domain have been less extensively studied. Here, we examine the properties of the ET domain of BRD3 as a protein/protein interaction module. Using a combination of pulldown and biophysical assays, we demonstrate that BRD3 binds to a range of chromatin-remodeling complexes, including the NuRD, BAF, and INO80 complexes, via a short linear "KIKL" motif in one of the complex subunits. NMR-based structural analysis revealed that, surprisingly, this mode of interaction is shared by the AF9 and ENL transcriptional coregulators that contain an acetyl-lysine-binding YEATS domain and regulate transcriptional elongation. This observation establishes a functional commonality between these two families of cancer-related transcriptional regulators. In summary, our data provide insight into the mechanisms by which BET family proteins might link chromatin acetylation to transcriptional outcomes and uncover an unexpected functional similarity between BET and YEATS family proteins.
Collapse
Affiliation(s)
- Dorothy C C Wai
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Taylor N Szyszka
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Amy E Campbell
- Division of Hematology, Children's Hospital of Philadelphia, and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Cherry Kwong
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Lorna E Wilkinson-White
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Ana P G Silva
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Ann H Kwan
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - Roland Gamsjaeger
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia
| | - James D Chalmers
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Wayne M Patrick
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Bin Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | | | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney New South Wales 2006, Australia.
| |
Collapse
|
21
|
Luna-Peláez N, García-Domínguez M. Lyar-Mediated Recruitment of Brd2 to the Chromatin Attenuates Nanog Downregulation Following Induction of Differentiation. J Mol Biol 2018; 430:1084-1097. [PMID: 29505757 DOI: 10.1016/j.jmb.2018.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 01/24/2023]
Abstract
During development, cellular differentiation programs need tight regulation for proper display of the activity of multiple factors in time and space. Chromatin adaptors of the BET family (Brd2, Brd3, Brd4 and Brdt in vertebrates) are transcription co-regulators tightly associated with the progression of the cell cycle. A key question regarding their function is whether they work as part of the general transcription machinery or, on the contrary, they are precisely recruited to the chromatin through specific transcription factors. Here, we report the selective recruitment of Brd2 to the chromatin by the transcription factor Lyar. We show that Lyar downregulation results in Brd2 dissociation from a number of promoters studied. On the contrary, dissociation of BET proteins from the chromatin has no effect on Lyar occupancy. Under differentiation conditions, the absence of Lyar leads to impaired downregulation of the pluripotency gene Nanog, with concomitant reduction in the upregulation of differentiation markers. Interestingly, following the induction of differentiation, Brd2 depletion exhibits the same effects as expressing a truncated Lyar molecule lacking the Brd2 interacting domain. Both approaches result in stronger Nanog repression, indicating that Lyar-mediated recruitment of Brd2 moderates Nanog downregulation when differentiation is triggered. Moreover, expression of truncated Lyar leads to impaired differentiation and increased apoptosis. Thus, Lyar-mediated recruitment of Brd2 would participate in preserving a proper timing for Nanog silencing ensuring the appropriate establishment of the differentiation program.
Collapse
Affiliation(s)
- Noelia Luna-Peláez
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain
| | - Mario García-Domínguez
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain.
| |
Collapse
|
22
|
Sahni JM, Keri RA. Targeting bromodomain and extraterminal proteins in breast cancer. Pharmacol Res 2018; 129:156-176. [PMID: 29154989 PMCID: PMC5828951 DOI: 10.1016/j.phrs.2017.11.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
Breast cancer is a collection of distinct tumor subtypes that are driven by unique gene expression profiles. These transcriptomes are controlled by various epigenetic marks that dictate which genes are expressed and suppressed. During carcinogenesis, extensive restructuring of the epigenome occurs, including aberrant acetylation, alteration of methylation patterns, and accumulation of epigenetic readers at oncogenes. As epigenetic alterations are reversible, epigenome-modulating drugs could provide a mechanism to silence numerous oncogenes simultaneously. Here, we review the impact of inhibitors of the Bromodomain and Extraterminal (BET) family of epigenetic readers in breast cancer. These agents, including the prototypical BET inhibitor JQ1, have been shown to suppress a variety of oncogenic pathways while inducing minimal, if any, toxicity in models of several subtypes of breast cancer. BET inhibitors also synergize with multiple approved anti-cancer drugs, providing a greater response in breast cancer cell lines and mouse models than either single agent. The combined findings of the studies discussed here provide an excellent rationale for the continued investigation of the utility of BET inhibitors in breast cancer.
Collapse
Affiliation(s)
- Jennifer M Sahni
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States; Department of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
23
|
Bdf1 Bromodomains Are Essential for Meiosis and the Expression of Meiotic-Specific Genes. PLoS Genet 2017; 13:e1006541. [PMID: 28068333 PMCID: PMC5261807 DOI: 10.1371/journal.pgen.1006541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 01/24/2017] [Accepted: 12/15/2016] [Indexed: 11/19/2022] Open
Abstract
Bromodomain and Extra-terminal motif (BET) proteins play a central role in transcription regulation and chromatin signalling pathways. They are present in unicellular eukaryotes and in this study, the role of the BET protein Bdf1 has been explored in Saccharomyces cerevisiae. Mutation of Bdf1 bromodomains revealed defects on both the formation of spores and the meiotic progression, blocking cells at the exit from prophase, before the first meiotic division. This phenotype is associated with a massive deregulation of the transcription of meiotic genes and Bdf1 bromodomains are required for appropriate expression of the key meiotic transcription factor NDT80 and almost all the Ndt80-inducible genes, including APC complex components. Bdf1 notably accumulates on the promoter of Ndt80 and its recruitment is dependent on Bdf1 bromodomains. In addition, the ectopic expression of NDT80 during meiosis partially bypasses this dependency. Finally, purification of Bdf1 partners identified two independent complexes with Bdf2 or the SWR complex, neither of which was required to complete sporulation. Taken together, our results unveil a new role for Bdf1 –working independently from its predominant protein partners Bdf2 and the SWR1 complex–as a regulator of meiosis-specific genes. Chromatin modifying proteins play a central role in transcription regulation and chromatin signalling. In this study we investigated the functional role of the bromodomains of the chromatin protein Bdf1 during yeast gametogenesis. Our results show that the bromodomains of Bdf1 are essential for meiotic progression and the formation of mature spores. Bdf1 bromodomains are required for the expression of key meiotic genes and the master regulator NDT80. Forced expression of NDT80 can partially rescue the formation of spores when Bdf1 bromodomains are mutated. The results presented here indicate that Bdf1 forms two exclusive complexes, with Bdf2 or with the SWR complex. However, none of these complexes are required for sporulation progression. To conclude, our findings suggest that Bdf1 is a new regulator of the meiotic transcription program and of the expression of the master regulator NDT80.
Collapse
|
24
|
Wang S, Zang C, Xiao T, Fan J, Mei S, Qin Q, Wu Q, Li X, Xu K, He HH, Brown M, Meyer CA, Liu XS. Modeling cis-regulation with a compendium of genome-wide histone H3K27ac profiles. Genome Res 2016; 26:1417-1429. [PMID: 27466232 PMCID: PMC5052056 DOI: 10.1101/gr.201574.115] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 07/21/2016] [Indexed: 01/01/2023]
Abstract
Model-based analysis of regulation of gene expression (MARGE) is a framework for interpreting the relationship between the H3K27ac chromatin environment and differentially expressed gene sets. The framework has three main functions: MARGE-potential, MARGE-express, and MARGE-cistrome. MARGE-potential defines a regulatory potential (RP) for each gene as the sum of H3K27ac ChIP-seq signals weighted by a function of genomic distance from the transcription start site. The MARGE framework includes a compendium of RPs derived from 365 human and 267 mouse H3K27ac ChIP-seq data sets. Relative RPs, scaled using this compendium, are superior to superenhancers in predicting BET (bromodomain and extraterminal domain) -inhibitor repressed genes. MARGE-express, which uses logistic regression to retrieve relevant H3K27ac profiles from the compendium to accurately model a query set of differentially expressed genes, was tested on 671 diverse gene sets from MSigDB. MARGE-cistrome adopts a novel semisupervised learning approach to identify cis-regulatory elements regulating a gene set. MARGE-cistrome exploits information from H3K27ac signal at DNase I hypersensitive sites identified from published human and mouse DNase-seq data. We tested the framework on newly generated RNA-seq and H3K27ac ChIP-seq profiles upon siRNA silencing of multiple transcriptional and epigenetic regulators in a prostate cancer cell line, LNCaP-abl. MARGE-cistrome can predict the binding sites of silenced transcription factors without matched H3K27ac ChIP-seq data. Even when the matching H3K27ac ChIP-seq profiles are available, MARGE leverages public H3K27ac profiles to enhance these data. This study demonstrates the advantage of integrating a large compendium of historical epigenetic data for genomic studies of transcriptional regulation.
Collapse
Affiliation(s)
- Su Wang
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Shanghai, 200433, China; Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Chongzhi Zang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Tengfei Xiao
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Jingyu Fan
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Shenglin Mei
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Qian Qin
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Qiu Wu
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xujuan Li
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Kexin Xu
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | - Housheng Hansen He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Clifford A Meyer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - X Shirley Liu
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
25
|
Pauklin S, Madrigal P, Bertero A, Vallier L. Initiation of stem cell differentiation involves cell cycle-dependent regulation of developmental genes by Cyclin D. Genes Dev 2016; 30:421-33. [PMID: 26883361 PMCID: PMC4762427 DOI: 10.1101/gad.271452.115] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coordination of differentiation and cell cycle progression represents an essential process for embryonic development and adult tissue homeostasis. These mechanisms ultimately determine the quantities of specific cell types that are generated. Despite their importance, the precise molecular interplays between cell cycle machinery and master regulators of cell fate choice remain to be fully uncovered. Here, we demonstrate that cell cycle regulators Cyclin D1-3 control cell fate decisions in human pluripotent stem cells by recruiting transcriptional corepressors and coactivator complexes onto neuroectoderm, mesoderm, and endoderm genes. This activity results in blocking the core transcriptional network necessary for endoderm specification while promoting neuroectoderm factors. The genomic location of Cyclin Ds is determined by their interactions with the transcription factors SP1 and E2Fs, which result in the assembly of cell cycle-controlled transcriptional complexes. These results reveal how the cell cycle orchestrates transcriptional networks and epigenetic modifiers to instruct cell fate decisions.
Collapse
Affiliation(s)
- Siim Pauklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Madingley, Cambridge CB2 0SZ, United Kingdom
| | - Pedro Madrigal
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Madingley, Cambridge CB2 0SZ, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Alessandro Bertero
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Madingley, Cambridge CB2 0SZ, United Kingdom
| | - Ludovic Vallier
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine, Department of Surgery, University of Cambridge, Madingley, Cambridge CB2 0SZ, United Kingdom; Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
26
|
Ma Q, Hu QS, Xu RJ, Zhen XC, Wang GH. Protease Omi facilitates neurite outgrowth in mouse neuroblastoma N2a cells by cleaving transcription factor E2F1. Acta Pharmacol Sin 2015; 36:966-75. [PMID: 26238290 DOI: 10.1038/aps.2015.48] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/28/2015] [Indexed: 12/13/2022]
Abstract
AIM Omi is an ATP-independent serine protease that is necessary for neuronal function and survival. The aim of this study was to investigate the role of protease Omi in regulating differentiation of mouse neuroblastoma cells and to identify the substrate of Omi involved in this process. METHODS Mouse neuroblastoma N2a cells and Omi protease-deficient mnd2 mice were used in this study. To modulate Omi and E2F1 expression, N2a cells were transfected with expression plasmids, shRNA plasmids or siRNA. Protein levels were detected using immunoblot assays. The interaction between Omi and E2F1 was studied using immunoprecipitation, GST pulldown and in vitro cleavage assays. N2a cells were treated with 20 μmol/L retinoic acid (RA) and 1% fetal bovine serum to induce neurite outgrowth, which was measured using Image J software. RESULTS E2F1 was significantly increased in Omi knockdown cells and in brain lysates of mnd2 mice, and was decreased in cells overexpressing wild-type Omi, but not inactive Omi S276C. In brain lysates of mnd2 mice, endogenous E2F1 was co-immunoprecipitated with endogenous Omi. In vitro cleavage assay demonstrated that Omi directly cleaved E2F1. Treatment of N2a cells with RA induced marked differentiation and neurite outgrowth accompanied by significantly increased Omi and decreased E2F1 levels, which were suppressed by pretreatment with the specific Omi inhibitor UCF-101. Knockdown of Omi in N2a cells suppressed RA-induced neurite outgrowth, which was partially restored by knockdown of E2F1. CONCLUSION Protease Omi facilitates neurite outgrowth by cleaving the transcription factor E2F1 in differentiated neuroblastoma cells; E2F1 is a substrate of Omi.
Collapse
|
27
|
Wang CY, Filippakopoulos P. Beating the odds: BETs in disease. Trends Biochem Sci 2015; 40:468-79. [PMID: 26145250 DOI: 10.1016/j.tibs.2015.06.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/16/2023]
Abstract
Bromodomains (BRDs) are evolutionarily conserved protein interaction modules that specifically recognise acetyl-lysine on histones and other proteins, facilitating roles in regulating gene transcription. BRD-containing proteins bound to chromatin loci such as enhancers are often deregulated in disease leading to aberrant expression of proinflammatory cytokines and growth-promoting genes. Recent developments targeting the bromo and extraterminal (BET) subset of BRD proteins demonstrated remarkable efficacy in murine models providing a compelling rationale for drug development and translation to the clinic. Here we summarise recent advances in our understanding of the roles of BETs in regulating gene transcription in normal and diseased tissue as well as the current status of their clinical translation.
Collapse
Affiliation(s)
- Chen-Yi Wang
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Panagis Filippakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK; Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
28
|
Abstract
Lysine acetylation is a key mechanism that regulates chromatin structure; aberrant acetylation levels have been linked to the development of several diseases. Acetyl-lysine modifications create docking sites for bromodomains, which are small interaction modules found on diverse proteins, some of which have a key role in the acetylation-dependent assembly of transcriptional regulator complexes. These complexes can then initiate transcriptional programmes that result in phenotypic changes. The recent discovery of potent and highly specific inhibitors for the BET (bromodomain and extra-terminal) family of bromodomains has stimulated intensive research activity in diverse therapeutic areas, particularly in oncology, where BET proteins regulate the expression of key oncogenes and anti-apoptotic proteins. In addition, targeting BET bromodomains could hold potential for the treatment of inflammation and viral infection. Here, we highlight recent progress in the development of bromodomain inhibitors, and their potential applications in drug discovery.
Collapse
|
29
|
Garcia-Gutierrez P, Juarez-Vicente F, Wolgemuth DJ, Garcia-Dominguez M. Pleiotrophin antagonizes Brd2 during neuronal differentiation. J Cell Sci 2014; 127:2554-64. [PMID: 24695857 DOI: 10.1242/jcs.147462] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bromodomain-containing protein 2 (Brd2) is a BET family chromatin adaptor required for expression of cell-cycle-associated genes and therefore involved in cell cycle progression. Brd2 is expressed in proliferating neuronal progenitors, displays cell-cycle-stimulating activity and, when overexpressed, impairs neuronal differentiation. Paradoxically, Brd2 is also detected in differentiating neurons. To shed light on the role of Brd2 in the transition from cell proliferation to differentiation, we had previously looked for proteins that interacted with Brd2 upon induction of neuronal differentiation. Surprisingly, we identified the growth factor pleiotrophin (Ptn). Here, we show that Ptn antagonized the cell-cycle-stimulating activity associated with Brd2, thus enhancing induced neuronal differentiation. Moreover, Ptn knockdown reduced neuronal differentiation. We analyzed Ptn-mediated antagonism of Brd2 in a cell differentiation model and in two embryonic processes associated with the neural tube: spinal cord neurogenesis and neural crest migration. Finally, we investigated the mechanisms of Ptn-mediated antagonism and determined that Ptn destabilizes the association of Brd2 with chromatin. Thus, Ptn-mediated Brd2 antagonism emerges as a modulation system accounting for the balance between cell proliferation and differentiation in the vertebrate nervous system.
Collapse
Affiliation(s)
- Pablo Garcia-Gutierrez
- Stem Cells Department, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) (Consejo Superior de Investigaciones Cientificas (CSIC), Junta de Andalucía, Universidad de Sevilla, Universidad Pablo de Olavide), Seville 41092, Spain
| | - Francisco Juarez-Vicente
- Stem Cells Department, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) (Consejo Superior de Investigaciones Cientificas (CSIC), Junta de Andalucía, Universidad de Sevilla, Universidad Pablo de Olavide), Seville 41092, Spain
| | - Debra J Wolgemuth
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Mario Garcia-Dominguez
- Stem Cells Department, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) (Consejo Superior de Investigaciones Cientificas (CSIC), Junta de Andalucía, Universidad de Sevilla, Universidad Pablo de Olavide), Seville 41092, Spain
| |
Collapse
|
30
|
Jin L, Wu Z, Xu W, Hu X, Zhang J, Xue Z, Cheng L. Identifying gene expression profile of spinal cord injury in rat by bioinformatics strategy. Mol Biol Rep 2014; 41:3169-77. [PMID: 24595446 DOI: 10.1007/s11033-014-3176-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/16/2014] [Indexed: 01/12/2023]
Abstract
Spinal cord injury (SCI) leads to the loss of sensory, motor, and autonomic function. We aimed to identify the therapeutic targets of-SCI by bioinformatics analysis. The gene expression profile of GSE20907 was downloaded from gene expression omnibus database. By comparing gene expression profiles with control samples, we screened out several differentially expressed genes (DEGs) in 3 days, 2 weeks and 1 month post-SCI. The pathway enrichment and protein-protein interaction (PPI) network analysis for the identified DEGs were performed. Then, transcription factors and microRNAs for DEGs were predicted. We found that up-regulated DEGs mainly participated in cell cycle, oxidative phosphorylation and immune-related pathways; while down-regulated DEGs were mainly involved in oxidative phosphorylation and central nervous system disease signaling pathways. In the constructed PPI network, Bub1, Vascular endothelial growth factor, Topoisomerase IIα (TOP2a) and Cdc20 showed better correspondence with cell cycle, repair system and nerve system. Furthermore, the up-regulated genes (Arpc1b, CD74 and Brd2) significantly mapped to the target genes of transcription factors. The down-regulated genes of 3 days post-injury and the up-regulated genes of 2 weeks post-injury were significantly enriched as the target genes of microRNAs (miR-129 and miR-124). In conclusion, our results may provide guidelines to discuss the collaboration of PPI network in carcinogenesis of SCI.
Collapse
Affiliation(s)
- Lingjing Jin
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Gallenkamp D, Gelato KA, Haendler B, Weinmann H. Bromodomains and their pharmacological inhibitors. ChemMedChem 2014; 9:438-64. [PMID: 24497428 DOI: 10.1002/cmdc.201300434] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/23/2013] [Indexed: 12/15/2022]
Abstract
Over 60 bromodomains belonging to proteins with very different functions have been identified in humans. Several of them interact with acetylated lysine residues, leading to the recruitment and stabilization of protein complexes. The bromodomain and extra-terminal domain (BET) proteins contain tandem bromodomains which bind to acetylated histones and are thereby implicated in a number of DNA-centered processes, including the regulation of gene expression. The recent identification of inhibitors of BET and non-BET bromodomains is one of the few examples in which effective blockade of a protein-protein interaction can be achieved with a small molecule. This has led to major strides in the understanding of the function of bromodomain-containing proteins and their involvement in diseases such as cancer and inflammation. Indeed, BET bromodomain inhibitors are now being clinically evaluated for the treatment of hematological tumors and have also been tested in clinical trials for the relatively rare BRD-NUT midline carcinoma. This review gives an overview of the newest developments in the field, with a focus on the biology of selected bromodomain proteins on the one hand, and on reported pharmacological inhibitors on the other, including recent examples from the patent literature.
Collapse
|
32
|
Rodriguez RM, Suarez-Alvarez B, Salvanés R, Huidobro C, Toraño EG, Garcia-Perez JL, Lopez-Larrea C, Fernandez AF, Bueno C, Menendez P, Fraga MF. Role of BRD4 in hematopoietic differentiation of embryonic stem cells. Epigenetics 2014; 9:566-78. [PMID: 24445267 DOI: 10.4161/epi.27711] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The bromodomain and extra terminal (BET) protein family member BRD4 is a transcriptional regulator, critical for cell cycle progression and cellular viability. Here, we show that BRD4 plays an important role in embryonic stem cell (ESC) regulation. During differentiation of ESCs, BRD4 expression is upregulated and its gene promoter becomes demethylated. Disruption of BRD4 expression in ESCs did not induce spontaneous differentiation but severely diminished hematoendothelial potential. Although BRD4 regulates c-Myc expression, our data show that the role of BRD4 in hematopoietic commitment is not exclusively mediated by c-Myc. Our results indicate that BRD4 is epigenetically regulated during hematopoietic differentiation ESCs in the context of a still unknown signaling pathway.
Collapse
Affiliation(s)
- Ramon M Rodriguez
- Cancer Epigenetics Laboratory; Instituto Universitario de Oncología del Principado de Asturias (IUOPA); HUCA; Universidad de Oviedo; Oviedo, Spain; Department of Immunology; Hospital Universitario Central de Asturias; Oviedo, Spain
| | | | - Ruben Salvanés
- Department of Immunology; Hospital Universitario Central de Asturias; Oviedo, Spain
| | - Covadonga Huidobro
- Cancer Epigenetics Laboratory; Instituto Universitario de Oncología del Principado de Asturias (IUOPA); HUCA; Universidad de Oviedo; Oviedo, Spain; MRC Human Genetics Unit; Institute of Genetics and Molecular Medicine; University of Edinburgh; Western General Hospital; Edinburgh, UK
| | - Estela G Toraño
- Cancer Epigenetics Laboratory; Instituto Universitario de Oncología del Principado de Asturias (IUOPA); HUCA; Universidad de Oviedo; Oviedo, Spain
| | - Jose L Garcia-Perez
- Department of Human DNA Variability; Pfizer-University of Granada and Andalusian Government Center for Genomics and Oncology (GENYO); Granada, Spain
| | - Carlos Lopez-Larrea
- Department of Immunology; Hospital Universitario Central de Asturias; Oviedo, Spain; Fundacion Renal "Íñigo Álvarez de Toledo"; Madrid, Spain
| | - Agustin F Fernandez
- Cancer Epigenetics Laboratory; Instituto Universitario de Oncología del Principado de Asturias (IUOPA); HUCA; Universidad de Oviedo; Oviedo, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute; Barcelona, Spain; Centre for Genomics and Oncological Research (GENYO); Pfizer/University of Granada/Andalusian Government; Granada, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute; Barcelona, Spain; Instituciò Catalana de Reserca i Estudis Avançats (ICREA); Barcelona, Spain
| | - Mario F Fraga
- Cancer Epigenetics Laboratory; Instituto Universitario de Oncología del Principado de Asturias (IUOPA); HUCA; Universidad de Oviedo; Oviedo, Spain; Department of Immunology and Oncology; Centro Nacional de Biotecnología/CNB-CSIC; Cantoblanco; Madrid, Spain
| |
Collapse
|
33
|
RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc Natl Acad Sci U S A 2013; 110:19754-9. [PMID: 24248379 DOI: 10.1073/pnas.1310658110] [Citation(s) in RCA: 366] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bromodomains have emerged as attractive candidates for the development of inhibitors targeting gene transcription. Inhibitors of the bromo and extraterminal (BET) family recently showed promising activity in diverse disease models. However, the pleiotropic nature of BET proteins regulating tissue-specific transcription has raised safety concerns and suggested that attempts should be made for domain-specific targeting. Here, we report that RVX-208, a compound currently in phase II clinical trials, is a BET bromodomain inhibitor specific for second bromodomains (BD2s). Cocrystal structures revealed binding modes of RVX-208 and its synthetic precursor, and fluorescent recovery after photobleaching demonstrated that RVX-208 displaces BET proteins from chromatin. However, gene-expression data showed that BD2 inhibition only modestly affects BET-dependent gene transcription. Our data demonstrate the feasibility of specific targeting within the BET family resulting in different transcriptional outcomes and highlight the importance of BD1 in transcriptional regulation.
Collapse
|