1
|
An S, Kim Y, Lee JY. A novel high-throughput single-molecule technique DNA curtain: applications for DNA metabolism. Mol Cells 2025:100224. [PMID: 40403877 DOI: 10.1016/j.mocell.2025.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/14/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025] Open
Abstract
The advancement of single-molecule imaging techniques has significantly enhanced our understanding of biomolecular reactions and cellular processes that remain obscured in ensemble measurements. In particular, DNA curtains are high-throughput hybrid methods integrating total internal reflection fluorescence microscopy, lipid fluidity, microfluidics, and nano-fabrication, enabling the direct visualization of protein-DNA interactions in real time. The techniques have emerged as powerful tools for probing molecular dynamics of diverse DNA metabolic processes, including DNA damage repair and chromatin dynamics. This review not only highlights recent applications of DNA curtain techniques for elucidating mechanisms underlying DNA damage repair and chromatin dynamics, but also shows how DNA curtain techniques have provided novel insights into the interplay between DNA metabolic processes in the chromatin context.
Collapse
Affiliation(s)
- Soyeoung An
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Youngseo Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea; Institute of Basic Science Center for Genomic Integrity, Ulsan 44919, Republic of Korea.
| |
Collapse
|
2
|
Shehzad S, Kim H. Single-molecule DNA-flow stretching assay as a versatile hybrid tool for investigating DNA-protein interactions. BMB Rep 2025; 58:41-51. [PMID: 39701027 PMCID: PMC11788529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/07/2024] [Accepted: 12/19/2024] [Indexed: 12/21/2024] Open
Abstract
Single-molecule techniques allow researchers to investigate individual molecules and obtain unprecedented details of the heterogeneous nature of biological entities. They play instrumental roles in studying DNA-protein interactions due to the ability to visualize DNA or proteins and to manipulate individual DNA molecules by applying force or torque. Here, we describe single-molecule DNA-flow stretching assays as hybrid tools that combine forces with fluorescence. We also review how widely these assays are utilized in elucidating working mechanisms of DNA-binding proteins. Additionally, we provide a brief explanation of various efforts to prepare DNA substrates with desired internal protein-binding sequences. More complicated needs for DNA-protein interaction research have led to improvements in single-molecule DNA flow-stretching techniques. Several DNA flow-stretching variants such as DNA curtain, DNA motion capture assays, and protein-induced fluorescence enhancement (PIFE) are introduced in this mini review. Singlemolecule DNA flow-stretching assays will keep contributing to our understanding of how DNA-binding proteins function due to their multiplexed, versatile, and robust capabilities. [BMB Reports 2025; 58(1): 41-51].
Collapse
Affiliation(s)
- Sadaf Shehzad
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA
| | - HyeongJun Kim
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, Texas 78539, USA
| |
Collapse
|
3
|
Kim S, Kim Y, Lee JY. Real-time single-molecule visualization using DNA curtains reveals the molecular mechanisms underlying DNA repair pathways. DNA Repair (Amst) 2024; 133:103612. [PMID: 38128155 DOI: 10.1016/j.dnarep.2023.103612] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
The demand for direct observation of biomolecular interactions provides new insights into the molecular mechanisms underlying many biological processes. Single-molecule imaging techniques enable real-time visualization of individual biomolecules, providing direct observations of protein machines. Various single-molecule imaging techniques have been developed and have contributed to breakthroughs in biological research. One such technique is the DNA curtain, a novel, high-throughput, single-molecule platform that integrates lipid fluidity, nano-fabrication, microfluidics, and fluorescence imaging. Many DNA metabolic reactions, such as replication, transcription, and chromatin dynamics, have been studied using DNA curtains. In particular, the DNA curtain platform has been intensively applied in investigating the molecular details of DNA repair processes. This article reviews DNA curtain techniques and their applications for imaging DNA repair proteins.
Collapse
Affiliation(s)
- Subin Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Youngseo Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|
4
|
Kang Y, An S, Min D, Lee JY. Single-molecule fluorescence imaging techniques reveal molecular mechanisms underlying deoxyribonucleic acid damage repair. Front Bioeng Biotechnol 2022; 10:973314. [PMID: 36185427 PMCID: PMC9520083 DOI: 10.3389/fbioe.2022.973314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in single-molecule techniques have uncovered numerous biological secrets that cannot be disclosed by traditional methods. Among a variety of single-molecule methods, single-molecule fluorescence imaging techniques enable real-time visualization of biomolecular interactions and have allowed the accumulation of convincing evidence. These techniques have been broadly utilized for studying DNA metabolic events such as replication, transcription, and DNA repair, which are fundamental biological reactions. In particular, DNA repair has received much attention because it maintains genomic integrity and is associated with diverse human diseases. In this review, we introduce representative single-molecule fluorescence imaging techniques and survey how each technique has been employed for investigating the detailed mechanisms underlying DNA repair pathways. In addition, we briefly show how live-cell imaging at the single-molecule level contributes to understanding DNA repair processes inside cells.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Soyeong An
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
- Center for Genomic Integrity, Institute of Basic Sciences, Ulsan, South Korea
- *Correspondence: Ja Yil Lee,
| |
Collapse
|
5
|
Ma G, Hu C, Li S, Gao X, Li H, Hu X. Simultaneous, hybrid single-molecule method by optical tweezers and fluorescence. NANOTECHNOLOGY AND PRECISION ENGINEERING 2019. [DOI: 10.1016/j.npe.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
The more the merrier: high-throughput single-molecule techniques. Biochem Soc Trans 2017; 45:759-769. [PMID: 28620037 DOI: 10.1042/bst20160137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 12/24/2022]
Abstract
The single-molecule approach seeks to understand molecular mechanisms by observing biomolecular processes at the level of individual molecules. These methods have led to a developing understanding that for many processes, a diversity of behaviours will be observed, representing a multitude of pathways. This realisation necessitates that an adequate number of observations are recorded to fully characterise this diversity. The requirement for large numbers of observations to adequately sample distributions, subpopulations, and rare events presents a significant challenge for single-molecule techniques, which by their nature do not typically provide very high throughput. This review will discuss many developing techniques which address this issue by combining nanolithographic approaches, such as zero-mode waveguides and DNA curtains, with single-molecule fluorescence microscopy, and by drastically increasing throughput of force-based approaches such as magnetic tweezers and laminar-flow techniques. These methods not only allow the collection of large volumes of single-molecule data in single experiments, but have also made improvements to ease-of-use, accessibility, and automation of data analysis.
Collapse
|
7
|
Kamagata K, Murata A, Itoh Y, Takahashi S. Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Norregaard K, Metzler R, Ritter CM, Berg-Sørensen K, Oddershede LB. Manipulation and Motion of Organelles and Single Molecules in Living Cells. Chem Rev 2017; 117:4342-4375. [PMID: 28156096 DOI: 10.1021/acs.chemrev.6b00638] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.
Collapse
Affiliation(s)
- Kamilla Norregaard
- Cluster for Molecular Imaging, Department of Biomedical Science and Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen , 2200 Copenhagen, Denmark
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam , 14476 Potsdam-Golm, Germany
| | - Christine M Ritter
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| | | | - Lene B Oddershede
- Niels Bohr Institute, University of Copenhagen , 2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Igarashi C, Murata A, Itoh Y, Subekti DRG, Takahashi S, Kamagata K. DNA Garden: A Simple Method for Producing Arrays of Stretchable DNA for Single-Molecule Fluorescence Imaging of DNA-Binding Proteins. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20160298] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chihiro Igarashi
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578
| | - Agato Murata
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578
| | - Yuji Itoh
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578
| | - Dwiky Rendra Graha Subekti
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578
| | - Satoshi Takahashi
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578
| | - Kiyoto Kamagata
- Institute for Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578
| |
Collapse
|
10
|
Gallardo IF, Pasupathy P, Brown M, Manhart CM, Neikirk DP, Alani E, Finkelstein IJ. High-Throughput Universal DNA Curtain Arrays for Single-Molecule Fluorescence Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10310-7. [PMID: 26325477 PMCID: PMC4624423 DOI: 10.1021/acs.langmuir.5b02416] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Single-molecule studies of protein-DNA interactions have shed critical insights into the molecular mechanisms of nearly every aspect of DNA metabolism. The development of DNA curtains-a method for organizing arrays of DNA molecules on a fluid lipid bilayer-has greatly facilitated these studies by increasing the number of reactions that can be observed in a single experiment. However, the utility of DNA curtains is limited by the challenges associated with depositing nanometer-scale lipid diffusion barriers onto quartz microscope slides. Here, we describe a UV lithography-based method for large-scale fabrication of chromium (Cr) features and organization of DNA molecules at these features for high-throughput single-molecule studies. We demonstrate this approach by assembling 792 independent DNA arrays (containing >900,000 DNA molecules) within a single microfluidic flowcell. As a first proof of principle, we track the diffusion of Mlh1-Mlh3-a heterodimeric complex that participates in DNA mismatch repair and meiotic recombination. To further highlight the utility of this approach, we demonstrate a two-lane flowcell that facilitates concurrent experiments on different DNA substrates. Our technique greatly reduces the challenges associated with assembling DNA curtains and paves the way for the rapid acquisition of large statistical data sets from individual single-molecule experiments.
Collapse
Affiliation(s)
| | | | | | - Carol M Manhart
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853, United States
| | | | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University , Ithaca, New York 14853, United States
| | | |
Collapse
|
11
|
Robison AD, Finkelstein IJ. Rapid prototyping of multichannel microfluidic devices for single-molecule DNA curtain imaging. Anal Chem 2014; 86:4157-63. [PMID: 24734940 DOI: 10.1021/ac500267v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Single-molecule imaging and manipulation of biochemical reactions continues to reveal numerous biological insights. To facilitate these studies, we have developed and implemented a high-throughput approach to organize and image hundreds of individual DNA molecules at aligned diffusion barriers. Nonetheless, obtaining statistically relevant data sets under a variety of reaction conditions remains challenging. Here, we present a method for integrating high-throughput single-molecule "DNA curtain" imaging with poly(dimethylsiloxane) (PDMS)-based microfluidics. Our benchtop fabrication method can be accomplished in minutes with common tools found in all molecular biology laboratories. We demonstrate the utility of this approach by simultaneous imaging of two independent biochemical reaction conditions in a laminar flow device. In addition, five different reaction conditions can be observed concurrently in a passive linear gradient generator. Combining rapid microfluidic fabrication with high-throughput DNA curtains greatly expands our capability to interrogate complex biological reactions.
Collapse
Affiliation(s)
- Aaron D Robison
- Department of Molecular Biosciences, ‡Institute for Cellular and Molecular Biology, and §Center for Systems and Synthetic Biology, The University of Texas at Austin , Austin, Texas 78712, United States
| | | |
Collapse
|