1
|
Shabalina IG, Vrbacký M, Pecinová A, Kalinovich AV, Drahota Z, Houštěk J, Mráček T, Cannon B, Nedergaard J. ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:2017-2030. [PMID: 24769119 DOI: 10.1016/j.bbabio.2014.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 02/05/2023]
Abstract
Whether active UCP1 can reduce ROS production in brown-fat mitochondria is presently not settled. The issue is of principal significance, as it can be seen as a proof- or disproof-of-principle concerning the ability of any protein to diminish ROS production through membrane depolarization. We therefore undertook a comprehensive investigation of the significance of UCP1 for ROS production, by comparing the ROS production in brown-fat mitochondria isolated from wildtype mice (that display membrane depolarization) or from UCP1(-/-) mice (with a high membrane potential). We tested the significance of UCP1 for glycerol-3-phosphate-supported ROS production by three methods (fluorescent dihydroethidium and the ESR probe PHH for superoxide, and fluorescent Amplex Red for hydrogen peroxide), and followed ROS production also with succinate, acyl-CoA or pyruvate as substrate. We studied the effects of the reverse electron flow inhibitor rotenone, the UCP1 activity inhibitor GDP, and the uncoupler FCCP. We also examined the effect of a physiologically induced increase in UCP1 amount. We noted GDP effects that were not UCP1-related. We conclude that only ROS production supported by exogenously added succinate was affected by the presence of active UCP1; ROS production supported by any other tested substrate (including endogenously generated succinate) was unaffected. This conclusion indicates that UCP1 is not involved in control of ROS production in brown-fat mitochondria. Extrapolation of these data to other tissues would imply that membrane depolarization may not necessarily decrease physiologically relevant ROS production. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014).
Collapse
Affiliation(s)
- Irina G Shabalina
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marek Vrbacký
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Alena Pecinová
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Anastasia V Kalinovich
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Zdeněk Drahota
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Josef Houštěk
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Tomáš Mráček
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Uncoupling protein 2 and 4 expression pattern during stem cell differentiation provides new insight into their putative function. PLoS One 2014; 9:e88474. [PMID: 24523901 PMCID: PMC3921169 DOI: 10.1371/journal.pone.0088474] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Apart from the first family member, uncoupling protein 1 (UCP1), the functions of other UCPs (UCP2-UCP5) are still unknown. In analyzing our own results and those previously published by others, we have assumed that UCP's cellular expression pattern coincides with a specific cell metabolism and changes if the latter is altered. To verify this hypothesis, we analyzed the expression of UCP1-5 in mouse embryonic stem cells before and after their differentiation to neurons. We have shown that only UCP2 is present in undifferentiated stem cells and it disappears simultaneously with the initiation of neuronal differentiation. In contrast, UCP4 is simultaneously up-regulated together with typical neuronal marker proteins TUJ-1 and NeuN during mESC differentiation in vitro as well as during murine brain development in vivo. Notably, several tested cell lines express UCP2, but not UCP4. In line with this finding, neuroblastoma cells that display metabolic features of tumor cells express UCP2, but not UCP4. UCP2's occurrence in cancer, immunological and stem cells indicates that UCP2 is present in cells with highly proliferative potential, which have a glycolytic type of metabolism as a common feature, whereas UCP4 is strongly associated with non-proliferative highly differentiated neuronal cells.
Collapse
|