1
|
Hardy CM, Burke MK, Everett LJ, Han MV, Lantz KM, Gibbs AG. Genome-Wide Analysis of Starvation-Selected Drosophila melanogaster-A Genetic Model of Obesity. Mol Biol Evol 2018; 35:50-65. [PMID: 29309688 PMCID: PMC5850753 DOI: 10.1093/molbev/msx254] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Experimental evolution affords the opportunity to investigate adaptation to stressful environments. Studies combining experimental evolution with whole-genome resequencing have provided insight into the dynamics of adaptation and a new tool to uncover genes associated with polygenic traits. Here, we selected for starvation resistance in populations of Drosophila melanogaster for over 80 generations. In response, the starvation-selected lines developed an obese condition, storing nearly twice the level of total lipids than their unselected controls. Although these fats provide a ∼3-fold increase in starvation resistance, the imbalance in lipid homeostasis incurs evolutionary cost. Some of these tradeoffs resemble obesity-associated pathologies in mammals including metabolic depression, low activity levels, dilated cardiomyopathy, and disrupted sleeping patterns. To determine the genetic basis of these traits, we resequenced genomic DNA from the selected lines and their controls. We found 1,046,373 polymorphic sites, many of which diverged between selection treatments. In addition, we found a wide range of genetic heterogeneity between the replicates of the selected lines, suggesting multiple mechanisms of adaptation. Genome-wide heterozygosity was low in the selected populations, with many large blocks of SNPs nearing fixation. We found candidate loci under selection by using an algorithm to control for the effects of genetic drift. These loci were mapped to a set of 382 genes, which associated with many processes including nutrient response, catabolic metabolism, and lipid droplet function. The results of our study speak to the evolutionary origins of obesity and provide new targets to understand the polygenic nature of obesity in a unique model system.
Collapse
Affiliation(s)
- Christopher M Hardy
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Molly K Burke
- Department of Integrative Biology, Oregon State University, Corvallis, OR
| | - Logan J Everett
- Department of Biological Sciences, North Carolina State University, Raleigh, NC
| | - Mira V Han
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Kathryn M Lantz
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Allen G Gibbs
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| |
Collapse
|
2
|
Kayashima Y, Murata S, Sato M, Matsuura K, Asanuma T, Chimoto J, Ishii T, Mochizuki K, Kumazawa S, Nakayama T, Yamakawa-Kobayashi K. Tea polyphenols ameliorate fat storage induced by high-fat diet in Drosophila melanogaster. Biochem Biophys Rep 2015; 4:417-424. [PMID: 29124233 PMCID: PMC5669444 DOI: 10.1016/j.bbrep.2015.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/27/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
Background Polyphenols in tea are considered beneficial to human health. However, many such claims of their bioactivity still require in vitro and in vivo evidence. Results Using Drosophila melanogaster as a model multicellular organism, we assess the fat accumulation-suppressing effects of theaflavin (TF), a tea polyphenol; epitheaflagallin (ETG), which has an unknown function; and epigallocatechin gallate (EGCg), a prominent component of green tea. Dietary TF reduced the malondialdehyde accumulation related to a high-fat diet in adult flies. Other physiological and genetic responses induced by the high-fat diet, such as lipid accumulation in the fat body and expression of lipid metabolism-related genes, were ameliorated by the addition of TF, ETG, and EGCg, in some cases approaching respective levels without high-fat diet exposure. Continuous ingestion of the three polyphenols resulted in a shortened lifespan. Conclusion We provide evidence in Drosophila that tea polyphenols have a fat accumulation-suppressing effect that has received recent attention. We also suggest that tea polyphenols can provide different desirable biological activities depending on their composition and the presence or absence of other chemical components. Tea polyphenols have a fat accumulation-suppressing effect in Drosophila. Dietary theaflavin ameliorates high-fat diet-induced hydroperoxidase accumulation. The novel tea polyphenol epitheaflagallin strongly suppresses lipid accumulation. The beneficial effects of tea polyphenols can be enhanced by altering composition.
Collapse
Affiliation(s)
- Yasunari Kayashima
- Department of Food and Nutrition, Yamanashi Gakuin Junior College, 2-4-5 Sakaori, Kofu-shi, Yamanashi 400-8575, Japan
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Corresponding author at: Department of Food and Nutrition, Yamanashi Gakuin Junior College, 2-4-5 Sakaori, Kofu-shi, Yamanashi 400-8575, Japan. Fax: +81 55 224 1396.Department of Food and Nutrition, Yamanashi Gakuin Junior College2-4-5 SakaoriKofu-shiYamanashi400-8575Japan
| | - Shinichi Murata
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Misaki Sato
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kanako Matsuura
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshimichi Asanuma
- Industrial Research Institute of Shizuoka Prefecture, 2078 Makigaya, Aoi-ku, Shizuoka 421-1298, Japan
| | - Junko Chimoto
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takeshi Ishii
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kazuo Mochizuki
- Industrial Research Institute of Shizuoka Prefecture, 2078 Makigaya, Aoi-ku, Shizuoka 421-1298, Japan
| | - Shigenori Kumazawa
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tsutomu Nakayama
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|