1
|
Yang F, Yang Z, Zhu Z, Zhu S, Song W, Yang Y, Yuan X. A joint photoacoustic imaging and broadband spectral analysis for early-stage intraoperative pathology assessment: A case study with colorectal cancer. PHOTOACOUSTICS 2025; 43:100712. [PMID: 40124587 PMCID: PMC11929096 DOI: 10.1016/j.pacs.2025.100712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/02/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
Accurate and rapid intraoperative diagnosis of micro-infiltration in early-stage tumors presents a formidable challenge for decades. Here, we propose a novel diagnostic approach, that combines Photoacoustic Morphological Imaging (PAMI) with an in situ broadband Photoacoustic Spectral Analysis (PASA), to implement intraoperative assessment of early-stage tumor while its high-frequencies between 50 and 150 MHz respond to various nuclei specifically. Our system, a broadband Ultraviolet Photoacoustic Microscopy (bUV-PAM), uniquely integrates ultraviolet laser-induced nucleus-specific photoacoustic excitation with broadband photoacoustic detection (up to 176 MHz at -6 dB) via an optical surface wave sensor. This approach facilitates the simultaneous acquisition of morphological and spectral information from unstained tissue sections, yielding a comprehensive dual-modality virtual slice within a single raster scan. Using human colorectal tissue samples, we applied the joint PAMI and in situ PASA approach across 6 case groups. Morphological features in PAMI showed a high concordance with Hematoxylin and Eosin (H&E) staining, whereas micro-infiltrative features were too indistinct to be identified in both PAMI and H&E images. In contrast, the PASA effectively distinguishes between micro-infiltrated and non-infiltrated tissues, a finding validated by subsequent Immunohistochemical (IHC) assessments. The preliminary results suggest that the joint approach holds potential to enhance intraoperative detection of micro-infiltration, thereby offering a promising avenue for accurate and rapid surgical margin assessment.
Collapse
Affiliation(s)
- Fan Yang
- Research Center for Frontier Fundamental Studies, Zhejiang Laboratory, Hangzhou 311100, China
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Zhengduo Yang
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Zheng Zhu
- Research Center for Frontier Fundamental Studies, Zhejiang Laboratory, Hangzhou 311100, China
| | - Siwei Zhu
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin 300121, China
| | - Wei Song
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yong Yang
- Research Center for Frontier Fundamental Studies, Zhejiang Laboratory, Hangzhou 311100, China
| | - Xiaocong Yuan
- Research Center for Frontier Fundamental Studies, Zhejiang Laboratory, Hangzhou 311100, China
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Xiao J, Yu X, Meng F, Zhang Y, Zhou W, Ren Y, Li J, Sun Y, Sun H, Chen G, He K, Lu L. Integrating spatial and single-cell transcriptomics reveals tumor heterogeneity and intercellular networks in colorectal cancer. Cell Death Dis 2024; 15:326. [PMID: 38729966 PMCID: PMC11087651 DOI: 10.1038/s41419-024-06598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 05/12/2024]
Abstract
Single cell RNA sequencing (scRNA-seq), a powerful tool for studying the tumor microenvironment (TME), does not preserve/provide spatial information on tissue morphology and cellular interactions. To understand the crosstalk between diverse cellular components in proximity in the TME, we performed scRNA-seq coupled with spatial transcriptomic (ST) assay to profile 41,700 cells from three colorectal cancer (CRC) tumor-normal-blood pairs. Standalone scRNA-seq analyses revealed eight major cell populations, including B cells, T cells, Monocytes, NK cells, Epithelial cells, Fibroblasts, Mast cells, Endothelial cells. After the identification of malignant cells from epithelial cells, we observed seven subtypes of malignant cells that reflect heterogeneous status in tumor, including tumor_CAV1, tumor_ATF3_JUN | FOS, tumor_ZEB2, tumor_VIM, tumor_WSB1, tumor_LXN, and tumor_PGM1. By transferring the cellular annotations obtained by scRNA-seq to ST spots, we annotated four regions in a cryosection from CRC patients, including tumor, stroma, immune infiltration, and colon epithelium regions. Furthermore, we observed intensive intercellular interactions between stroma and tumor regions which were extremely proximal in the cryosection. In particular, one pair of ligands and receptors (C5AR1 and RPS19) was inferred to play key roles in the crosstalk of stroma and tumor regions. For the tumor region, a typical feature of TMSB4X-high expression was identified, which could be a potential marker of CRC. The stroma region was found to be characterized by VIM-high expression, suggesting it fostered a stromal niche in the TME. Collectively, single cell and spatial analysis in our study reveal the tumor heterogeneity and molecular interactions in CRC TME, which provides insights into the mechanisms underlying CRC progression and may contribute to the development of anticancer therapies targeting on non-tumor components, such as the extracellular matrix (ECM) in CRC. The typical genes we identified may facilitate to new molecular subtypes of CRC.
Collapse
Affiliation(s)
- Jing Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xinyang Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Fanlin Meng
- CapitalBio Technology Corporation, Beijing, China
| | - Yuncong Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Wenbin Zhou
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Yonghong Ren
- CapitalBio Technology Corporation, Beijing, China
| | - Jingxia Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Yimin Sun
- CapitalBio Technology Corporation, Beijing, China
| | - Hongwei Sun
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China
| | - Guokai Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
- Zhuhai UM Science & Technology Research Institute, Zhuhai, Guangdong, China.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China.
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, Guangdong, China.
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Zhang C, Chen Y, Li F, Yang M, Meng F, Zhang Y, Chen W, Wang W. B7-H3 is spliced by SRSF3 in colorectal cancer. Cancer Immunol Immunother 2021; 70:311-321. [PMID: 32719950 PMCID: PMC10991627 DOI: 10.1007/s00262-020-02683-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
B7-H3, an important co-inhibitor, is abnormally highly expressed in a variety of malignancies. The antibodies targeting B7-H3 have exhibited beneficial therapeutic effects in clinical trials. Therefore, discovery of the regulatory factors in B7-H3 expression may provide new strategies for tumor therapy. Here, we investigated the splicing factors involved in the splicing of B7-H3. By individual knockdown of the splicing factors in colorectal cancer (CRC) cells, we found that B7-H3 expression was markedly inhibited by SRSF3 and SRSF8, especially SRSF3. Then we found that both SRSF3 and B7-H3 were highly expressed in CRC tissues. Moreover, high-expression of either SRSF3 or B7-H3 was significantly correlated with poor prognosis of patients. The expression of B7-H3 mRNA and protein were evidently reduced by SRSF3 silence, but were enhanced by overexpression of SRSF3 in both HCT-116 and HCT-8 cells. The results from the RNA immunoprecipitation (RIP) assays demonstrated that SRSF3 protein directly binds to B7-H3 mRNA. In addition, we constructed a minigene recombinant plasmid for expressing B7-H3 exons 3-6. We found that SRSF3 contributed to the retention of B7-H3 exon 4. These findings demonstrate that SRSF3 involves in the splicing of B7-H3 by directly binding to its exon 4 and/or 6. It may provide novel insights into the regulatory mechanisms of B7-H3 expression and potential strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Chunxia Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215006, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yinshuang Chen
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Fuchao Li
- Department of Gerontology, The Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, China
| | - Man Yang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Fanyi Meng
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Yawen Zhang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215006, China.
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Shizhi Street 188, Suzhou, 215006, China.
| | - Weipeng Wang
- Center for Drug Metabolism and Pharmacokinetics, College of Pharmaceutical Sciences, Soochow University, Building #1339, Wenjing Road, Suzhou Industrial Park, Suzhou, 215123, China.
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, 215006, China.
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
4
|
Procházková J, Slavík J, Bouchal J, Levková M, Hušková Z, Ehrmann J, Ovesná P, Kolář Z, Skalický P, Straková N, Zapletal O, Kozubík A, Hofmanová J, Vondráček J, Machala M. Specific alterations of sphingolipid metabolism identified in EpCAM-positive cells isolated from human colon tumors. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158742. [PMID: 32447053 DOI: 10.1016/j.bbalip.2020.158742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Josef Slavík
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | - Monika Levková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | - Zlata Hušková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | - Jiří Ehrmann
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine, Palacký University, Olomouc, Czech Republic
| | - Petra Ovesná
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | | | | | - Nicol Straková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Ondřej Zapletal
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Alois Kozubík
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jiřina Hofmanová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|
5
|
An N, Zhao C, Yu Z, Yang X. Identification of prognostic genes in colorectal cancer through transcription profiling of multi-stage carcinogenesis. Oncol Lett 2018; 17:432-441. [PMID: 30655784 DOI: 10.3892/ol.2018.9632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/09/2018] [Indexed: 01/02/2023] Open
Abstract
Colorectal cancer is a complex multistage process following the adenoma-carcinoma sequence. Additional research on the basis of molecular dysregulations, particularly in the precancerous stage, may provide insight into the realization of potential biomarkers and therapeutic targets for the disease. In the present study, the expression profile of human multistage colorectal mucosa tissues, including healthy, adenoma and adenocarcinoma samples, was downloaded. Genes that were consistently differentially expressed in precancerous tissues and cancer samples were collected. Based on a merged biological network, the biggest connected component composed of these identified genes and their one-step neighbors were retrieved to conduct random walk with restart algorithm, in order to identify genes significantly affected during carcinogenesis. Therefore, 35 genes significantly affected by carcinogenic dysregulation were successfully identified. Survival and Cox analysis indicated that the expression of these genes was an independent prognostic factor confirmed by six cohorts. In summary, based on the transcription profile of multi-stage carcinogenesis and bioinformatics analysis, 35 genes significantly associated with patient survival were successfully identified, which may serve as promising therapeutic targets for the disease.
Collapse
Affiliation(s)
- Ning An
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Chen Zhao
- Department of Anatomy, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zhuang Yu
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xue Yang
- Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
6
|
Motieghader H, Kouhsar M, Najafi A, Sadeghi B, Masoudi-Nejad A. mRNA-miRNA bipartite network reconstruction to predict prognostic module biomarkers in colorectal cancer stage differentiation. MOLECULAR BIOSYSTEMS 2018; 13:2168-2180. [PMID: 28861579 DOI: 10.1039/c7mb00400a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomarker detection is one of the most important and challenging problems in cancer studies. Recently, non-coding RNA based biomarkers such as miRNA expression levels have been used for early diagnosis of many cancer types. In this study, a systems biology approach was used to detect novel miRNA based biomarkers for CRC diagnosis in early stages. The mRNA expression data from three CRC stages (Low-grade Intraepithelial Neoplasia (LIN), High-grade Intraepithelial Neoplasia (HIN) and Adenocarcinoma) were used to reconstruct co-expression networks. The networks were clustered to extract co-expression modules and detected low preserved modules among CRC stages. Then, the experimentally validated mRNA-miRNA interaction data were applied to reconstruct three mRNA-miRNA bipartite networks. Twenty miRNAs with the highest degree (hub miRNAs) were selected in each bipartite network to reconstruct three bipartite subnetworks for further analysis. The analysis of these hub miRNAs in the bipartite subnetworks revealed 30 distinct important miRNAs as prognostic markers in CRC stages. There are two novel CRC related miRNAs (hsa-miR-190a-3p and hsa-miR-1277-5p) in these 30 hub miRNAs that have not been previously reported in CRC. Furthermore, a drug-gene interaction network was reconstructed to detect potential candidate drugs for CRC treatment. Our analysis shows that the hub miRNAs in the mRNA-miRNA bipartite network are very essential in CRC progression and should be investigated precisely in future studies. In addition, there are many important target genes in the results that may be critical in CRC progression and can be analyzed as therapeutic targets in future research.
Collapse
Affiliation(s)
- Habib Motieghader
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | | | | | | | | |
Collapse
|
7
|
Gutiérrez ML, Corchete LA, Sarasquete ME, Del Mar Abad M, Bengoechea O, Fermiñán E, Anduaga MF, Del Carmen S, Iglesias M, Esteban C, Angoso M, Alcazar JA, García J, Orfao A, Muñoz-Bellvís L, Sayagués JM. Prognostic impact of a novel gene expression profile classifier for the discrimination between metastatic and non-metastatic primary colorectal cancer tumors. Oncotarget 2017; 8:107685-107700. [PMID: 29296198 PMCID: PMC5746100 DOI: 10.18632/oncotarget.22591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023] Open
Abstract
Despite significant advances have been achieved in the genetic characterization of sporadic colorectal cancer (sCRC), the precise genetic events leading to the development of distant metastasis remain poorly understood. Thus, accurate prediction of metastatic disease in newly-diagnosed sCRC patients remains a challenge. Here, we evaluated the specific genes and molecular pathways associated with the invasive potential of colorectal tumor cells, through the assessment of the gene expression profile (GEP) of coding and non-coding genes in metastatic (MTX) vs. non-metastatic (non-MTX) primary sCRC tumors followed for >5 years. Overall, MTX tumors showed up-regulation of genes associated with tumor progression and metastatic potential while non-MTX cases displayed GEP associated with higher cell proliferation, activation of DNA repair and anti-tumoral immune/inflammatory responses. Based on only 19 genes a specific GEP that classifies sCRC tumors into two MTX-like and non-MTX-like molecular subgroups was defined which shows an independent prognostic impact on patient overall survival, particularly when it is combined with the lymph node status at diagnosis. In summary, we show an association between the global GEP of primary sCRC cells and their metastatic potential and defined a GEP-based classifier that provides the basis for further prognostic stratification of sCRC patients who are at risk of distant metastases.
Collapse
Affiliation(s)
- María Laura Gutiérrez
- Cytometry Service-NUCLEUS, Cancer Research Center, IBMCC-CSIC/USAL, Department of Medicine, University of Salamanca, Institute of Biomedical Research of Salamanca, Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Salamanca, Spain
| | - Luis Antonio Corchete
- Cancer Research Center and Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - María Eugenia Sarasquete
- Cancer Research Center and Service of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - María Del Mar Abad
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Oscar Bengoechea
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Encarna Fermiñán
- Genomics Unit, Cancer Research Center, IBMCC-CSIC/USAL, Salamanca, Spain
| | - María Fernanda Anduaga
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Sofía Del Carmen
- Department of Pathology, University Hospital of Salamanca, Salamanca, Spain
| | - Manuel Iglesias
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Carmen Esteban
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - María Angoso
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Jose Antonio Alcazar
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Jacinto García
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Cytometry Service-NUCLEUS, Cancer Research Center, IBMCC-CSIC/USAL, Department of Medicine, University of Salamanca, Institute of Biomedical Research of Salamanca, Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Salamanca, Spain
| | - Luis Muñoz-Bellvís
- Service of General and Gastrointestinal Surgery, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - José María Sayagués
- Cytometry Service-NUCLEUS, Cancer Research Center, IBMCC-CSIC/USAL, Department of Medicine, University of Salamanca, Institute of Biomedical Research of Salamanca, Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Salamanca, Spain
| |
Collapse
|
8
|
Feasibility of Unbiased RNA Profiling of Colorectal Tumors: A Proof of Principle. PLoS One 2016; 11:e0159522. [PMID: 27441409 PMCID: PMC4956030 DOI: 10.1371/journal.pone.0159522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/04/2016] [Indexed: 12/24/2022] Open
Abstract
Despite recent advances in molecular profiling of colorectal cancer (CRC), as of yet this has not translated into an unbiased molecular liquid biopsy profile which can accurately screen for early CRC. In this study we depict the profile of early stage CRC as well as for advanced adenomas (AA) by combination of current molecular knowledge with microarray technology, using efficient circulating free plasma RNA purification from blood and RNA amplification technologies. We joined literature search with Affymetrix gene chip experimental procedure to draw the circulating free plasma RNA profile of colorectal cancer disease reflected in blood. The RNA panel was tested by two datasets comparing patients with CRC with healthy subjects and patients with AA to healthy subjects. For the CRC patient cohort (28 CRC cases vs. 41 healthy controls), the ROC analysis of the selected biomarker panel generated a sensitivity of 75% and a specificity of 93% for the detection of CRC using 8-gene classification model. For the AA patient cohort (28 subjects vs. 46 healthy controls), a sensitivity of 60% and a specificity of 87% were calculated using a 2-gene classification model. We have identified a panel of 8 plasma RNA markers as a preliminary panel for CRC detection and subset markers suitable for AA detection. Subjected to extensive clinical validation we suggest that this panel represents a feasible approach and a potential strategy for noninvasive early diagnosis, as a first-line screening test for asymptomatic, average-risk population before colonoscopy.
Collapse
|
9
|
Feng L, Tong R, Liu X, Zhang K, Wang G, Zhang L, An N, Cheng S. A network-based method for identifying prognostic gene modules in lung squamous carcinoma. Oncotarget 2016; 7:18006-20. [PMID: 26919109 PMCID: PMC4951267 DOI: 10.18632/oncotarget.7632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/13/2016] [Indexed: 12/23/2022] Open
Abstract
Similarities in gene expression between both developing embryonic and precancerous tissues and cancer tissues may help identify much-needed biomarkers and therapeutic targets in lung squamous carcinoma. In this study, human lung samples representing ten successive time points, from embryonic development to carcinogenesis, were used to construct global gene expression profiles. Differentially expressed genes with similar expression in precancerous and cancer samples were identified. Using a network-based greedy searching algorithm to analyze the training cohort (n = 69) and three independent testing cohorts, we successfully identified a significant 22-gene module in which expression levels were correlated with overall survival in lung squamous carcinoma patients.
Collapse
Affiliation(s)
- Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College and Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Run Tong
- Department of Respiratory and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaohong Liu
- Department of Gynecology and Obstetrics, Maternal and Child Health Care Hospital of Haidian, Beijing, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College and Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Guiqi Wang
- Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Zhang
- Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ning An
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College and Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College and Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Yamada A, Horimatsu T, Okugawa Y, Nishida N, Honjo H, Ida H, Kou T, Kusaka T, Sasaki Y, Yagi M, Higurashi T, Yukawa N, Amanuma Y, Kikuchi O, Muto M, Ueno Y, Nakajima A, Chiba T, Boland CR, Goel A. Serum miR-21, miR-29a, and miR-125b Are Promising Biomarkers for the Early Detection of Colorectal Neoplasia. Clin Cancer Res 2015; 21:4234-42. [PMID: 26038573 DOI: 10.1158/1078-0432.ccr-14-2793] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/09/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Circulating microRNAs (miRNA) are emerging as promising diagnostic biomarkers for colorectal cancer, but their usefulness for detecting early colorectal neoplasms remains unclear. This study aimed to identify serum miRNA biomarkers for the identification of patients with early colorectal neoplasms. EXPERIMENTAL DESIGN A cohort of 237 serum samples from 160 patients with early colorectal neoplasms (148 precancerous lesions and 12 cancers) and 77 healthy subjects was analyzed in a three-step approach that included a comprehensive literature review for published biomarkers, a screening phase, and a validation phase. RNA was extracted from sera, and levels of miRNAs were examined by real-time RT-PCR. RESULTS Nine miRNAs (miR-18a, miR-19a, miR-19b, miR-20a, miR-21, miR-24, miR-29a, miR-92, and miR-125b) were selected as candidate biomarkers for initial analysis. In the screening phase, serum levels of miR-21, miR-29a, and miR-125b were significantly higher in patients with early colorectal neoplasm than in healthy controls. Elevated levels of miR-21, miR-29a, and miR-125b were confirmed in the validation phase using an independent set of subjects. Area under the curve (AUC) values for serum miR-21, miR-29a, miR-125b, and their combined score in discriminating patients with early colorectal neoplasm from healthy controls were 0.706, 0.741, 0.806, and 0.827, respectively. Serum levels of miR-29a and miR-125b were significantly higher in patients who had only small colorectal neoplasms (≤5 mm) than in healthy subjects. CONCLUSIONS Because serum levels of miR-21, miR-29a, and miR-125b discriminated patients with early colorectal neoplasm from healthy controls, our data highlight the potential clinical use of these molecular signatures for noninvasive screening of patients with colorectal neoplasia.
Collapse
Affiliation(s)
- Atsushi Yamada
- Center for Gastrointestinal Research, Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas. Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Horimatsu
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshinaga Okugawa
- Center for Gastrointestinal Research, Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas. Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kinki University, Faculty of Medicine, Osaka, Japan
| | - Hajime Honjo
- Department of Gastroenterology, Otsu Red Cross Hospital, Shiga, Japan
| | - Hiroshi Ida
- Internal Medicine, Kyoto Police Hospital, Kyoto, Japan
| | - Tadayuki Kou
- Digestive Disease Center, The Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Toshihiro Kusaka
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Yu Sasaki
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Makato Yagi
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Takuma Higurashi
- Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan
| | - Norio Yukawa
- Department of Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yusuke Amanuma
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Kikuchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Muto
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiyuki Ueno
- Department of Gastroenterology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University, Yokohama, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - C Richard Boland
- Center for Gastrointestinal Research, Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas.
| | - Ajay Goel
- Center for Gastrointestinal Research, Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|