1
|
Koller S, Kendler J, Karacs J, Wolf A, Kreuzinger C, Von Der Decken I, Mungenast F, Mechtcheriakova D, Schreiner W, Gleiss A, Jäger W, Cacsire Castillo-Tong D, Thalhammer T. SLCO4A1 expression is associated with activated inflammatory pathways in high-grade serous ovarian cancer. Front Pharmacol 2022; 13:946348. [PMID: 36105223 PMCID: PMC9465617 DOI: 10.3389/fphar.2022.946348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with high-grade serous ovarian cancer (HGSOC) have a very poor overall survival. Current therapeutic approaches do not bring benefit to all patients. Although genetic alterations and molecular mechanisms are well characterized, the molecular pathological conditions are poorly investigated. Solute carrier organic anion transporter family member 4A1 (SLCO4A1) encodes OATP4A1, which is an uptake membrane transporter of metabolic products. Its expression may influence various signaling pathways associated with the molecular pathophysiological conditions of HGSOC and consequently tumor progression. RNA sequencing of 33 patient-derived HGSOC cell lines showed that SLCO4A1 expression was diverse by individual tumors, which was further confirmed by RT-qPCR, Western blotting and immunohistochemistry. Gene Set Enrichment Analysis revealed that higher SLCO4A1 level was associated with inflammation-associated pathways including NOD-like receptor, adipocytokine, TALL1, CD40, NF-κB, and TNF-receptor 2 signaling cascades, while low SLCO4A1 expression was associated with the mitochondrial electron transport chain pathway. The overall gene expression pattern in all cell lines was specific to each patient and remained largely unchanged during tumor progression. In addition, genes encoding ABCC3 along with SLCO4A1-antisense RNA 1, were associated with higher expression of the SLCO4A1, indicating their possible involvement in inflammation-associated pathways that are downstream to the prostaglandin E2/cAMP axis. Taken together, increased SLCO4A1/OATP4A1 expression is associated with the upregulation of specific inflammatory pathways, while the decreased level is associated with mitochondrial dysfunction. These molecular pathophysiological conditions are tumor specific and should be taken into consideration by the development of therapies against HGSOC.
Collapse
Affiliation(s)
- Stephanie Koller
- Department of Obstetrics and Gynecology, Translational Gynecology Group, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jonatan Kendler
- Department of Obstetrics and Gynecology, Translational Gynecology Group, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Jasmine Karacs
- Department of Obstetrics and Gynecology, Translational Gynecology Group, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Andrea Wolf
- Department of Obstetrics and Gynecology, Translational Gynecology Group, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Caroline Kreuzinger
- Department of Obstetrics and Gynecology, Translational Gynecology Group, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Isabel Von Der Decken
- Department of Obstetrics and Gynecology, Translational Gynecology Group, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Felicitas Mungenast
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Diana Mechtcheriakova
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Schreiner
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Walter Jäger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Dan Cacsire Castillo-Tong
- Department of Obstetrics and Gynecology, Translational Gynecology Group, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Li J, Zhang Y, Chen L, Lu X, Li Z, Xue Y, Guan YQ. Cervical Cancer HeLa Cell Autocrine Apoptosis Induced by Coimmobilized IFN-γ plus TNF-α Biomaterials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8451-8464. [PMID: 29436216 DOI: 10.1021/acsami.7b18277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Using external methods to induce the death of cancer cells is recognized as one of the main strategies for cancer treatment. Research indicated that TNF-α is frequently used in tumor biotherapy while IFN-γ can directly inhibit tumor cell proliferation. In our study, TNF-α and IFN-γ were coimmobilized on polystyrene material (PSt) or Fe3O4-oleic acid nanoparticles (NPs). Then the structural change of these two proteins can be observed. Meanwhile, the expressions of both TNF-α and IFN-α increased significantly, as determined by gene microarray analysis; however, in the presence of TNF-α plus IFN-α inhibitors, TNF-α and IFN-α did not increase in HeLa cells induced by coimmobilized IFN-γ plus TNF-α. Our results indicate that such change can stimilate HeLa cells to secrete more TNF-α and IFN-α, by which the apoptosis of HeLa cells could be further induced. This study is the first report of autocrine-induced apoptosis of HeLa cells. In addition, we performed ELISA, RT-PCR, flow cytometry, and Western blot analyses, as well as a series of analytical tests at the animal level. our data also indicate that the PSt-coimmobilized IFN-γ plus TNF-α has apparent effects for cancer treatment in vivo, which is of great significance for translation into clinical medicine.
Collapse
Affiliation(s)
- Jian Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
- Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University , South China Normal University , Guangzhou 510631 , China
| | - Yuxiao Zhang
- School of Life Science , South China Normal University , Guangzhou 510631 , China
| | - Liyi Chen
- School of Life Science , South China Normal University , Guangzhou 510631 , China
| | - Xinhua Lu
- School of Life Science , South China Normal University , Guangzhou 510631 , China
| | - Zhibin Li
- School of Life Science , South China Normal University , Guangzhou 510631 , China
| | - Yongyong Xue
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
- Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University , South China Normal University , Guangzhou 510631 , China
| | - Yan-Qing Guan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics , South China Normal University , Guangzhou 510631 , China
- Joint Laboratory of Laser Oncology with Cancer Center of Sun Yet-sen University , South China Normal University , Guangzhou 510631 , China
- School of Life Science , South China Normal University , Guangzhou 510631 , China
| |
Collapse
|
3
|
Brazilian Green Propolis Extract Synergizes with Protoporphyrin IX-mediated Photodynamic Therapy via Enhancement of Intracellular Accumulation of Protoporphyrin IX and Attenuation of NF-κB and COX-2. Molecules 2017; 22:molecules22050732. [PMID: 28471399 PMCID: PMC6154578 DOI: 10.3390/molecules22050732] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 01/02/2023] Open
Abstract
Brazilian green propolis (BGP) is noted for its impressive antitumor effects and has been used as a folk medicine in various cultures for many years. It has been demonstrated that BGP could enhance the cytotoxic effect of cytostatic drugs on tumor cells. Photodynamic therapy (PDT) is a therapeutic approach used against malignant cells. To assess the synergistic effect of BGP extract on protoporphyrin IX (PpIX)-mediated photocytotoxicity, MTT assays were performed using A431 and HeLa cells. TUNEL assay and Annexin V-FITC/PI staining were performed to confirm the induction of apoptosis. Western blotting analysis was performed to examine the pro-apoptotic proteins, anti-apoptotic proteins and inflammation related proteins in A431 cells. Intracellular accumulation of PpIX was examined by flow cytometry. The synergistic effect of BGP extract in PpIX-PDT was also evaluated with a xenograft model. Our findings reveal that BGP extract increased PpIX-mediated photocytotoxicity in A431 and HeLa cells. PpIX-PDT with BGP extract treatment resulted in a decrease in Bcl-xL and an increase in NOXA, Bax and caspase-3 cleavage. The protein expression levels of p-IKKα/β, NF-κB and COX-2 were upregulated by PpIX-PDT but significantly attenuated when in combination with BGP extract. BGP extract was also found to significantly enhance the intracellular accumulation of PpIX in A431 cells. BGP extract increased PpIX-mediated photocytotoxicity in a xenograft model as well. Our findings provide evidence for a synergistic effect of BGP extract in PpIX-PDT both in vitro and in vivo.
Collapse
|
4
|
Bachsais M, Naddaf N, Yacoub D, Salti S, Alaaeddine N, Aoudjit F, Hassan GS, Mourad W. The Interaction of CD154 with the α5β1 Integrin Inhibits Fas-Induced T Cell Death. PLoS One 2016; 11:e0158987. [PMID: 27391025 PMCID: PMC4938623 DOI: 10.1371/journal.pone.0158987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/26/2016] [Indexed: 11/19/2022] Open
Abstract
CD154, a critical regulator of the immune response, is usually associated with chronic inflammatory, autoimmune diseases as well as malignant disorders. In addition to its classical receptor CD40, CD154 is capable of binding other receptors, members of the integrin family, the αIIbβ3, αMβ2 and α5β1. Given the role attributed to integrins and particularly the β1 integrins in inhibiting apoptotic events in normal as well as malignant T cells, we were highly interested in investigating the role of the CD154/α5β1 interaction in promoting survival of malignant T cells contributing as such to tumor development and/or propagation. To support our hypothesis, we first show that soluble CD154 binds to the T-cell acute lymphoblastic leukemia cell line, Jurkat E6.1 in a α5β1-dependent manner. Binding of soluble CD154 to α5β1 integrin of Jurkat cells leads to the activation of key survival proteins, including the p38 and ERK1/2 mitogen-activated protein kinases (MAPKs), phosphoinositide 3 kinase (PI-3K), and Akt. Interestingly, soluble CD154 significantly inhibits Fas-mediated apoptosis in T cell leukemia-lymphoma cell lines, Jurkat E6.1 and HUT78 cells, an important hallmark of T cell survival during malignancy progression. These anti-apoptotic effects were mainly mediated by the activation of the PI-3K/Akt pathway but also involved the p38 and the ERK1/2 MAPKs cascades. Our data also demonstrated that the CD154-triggered inhibition of the Fas-mediated cell death response was dependent on a suppression of caspase-8 cleavage, but independent of de novo protein synthesis or alterations in Fas expression on cell surface. Together, our results highlight the impact of the CD154/α5β1 interaction in T cell function/survival and identify novel targets for the treatment of malignant disorders, particularly of T cell origin.
Collapse
Affiliation(s)
- Meriem Bachsais
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, 900 rue Saint-Denis, Tour Viger, Room 10-482, Montréal, QC, Canada
| | - Nadim Naddaf
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, 900 rue Saint-Denis, Tour Viger, Room 10-482, Montréal, QC, Canada
| | - Daniel Yacoub
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, 900 rue Saint-Denis, Tour Viger, Room 10-482, Montréal, QC, Canada
| | - Suzanne Salti
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, 900 rue Saint-Denis, Tour Viger, Room 10-482, Montréal, QC, Canada
| | - Nada Alaaeddine
- Department of Pathology, 11-5076, Faculty of Medicine, St Joseph University, Beirut, Lebanon
| | - Fawzi Aoudjit
- Centre de recherche en immunologie et rhumatologie, CHUL, 2705, Boul Laurier, QC, Canada
| | - Ghada S. Hassan
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, 900 rue Saint-Denis, Tour Viger, Room 10-482, Montréal, QC, Canada
| | - Walid Mourad
- Laboratoire d’Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l’Université de Montréal, 900 rue Saint-Denis, Tour Viger, Room 10-482, Montréal, QC, Canada
- * E-mail:
| |
Collapse
|
5
|
Sun B, Chen L, Fu H, Guo L, Guo H, Zhang N. Upregulation of RICTOR gene transcription by the proinflammatory cytokines through NF-κB pathway contributes to the metastasis of renal cell carcinoma. Tumour Biol 2015; 37:4457-66. [PMID: 26500094 DOI: 10.1007/s13277-015-4296-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022] Open
Abstract
Metastasis accounts for more than 50 % of deaths among renal cell carcinoma (RCC) patients, and therefore, it is important to study the biology of metastasis and identify metastasis-associated biomarkers for risk prognosis and stratification of patients for an individualized therapy of RCC. In cultured RCC cells, knockdown of Rictor by short hairpin RNA (shRNA) inhibited cell migration and invasion, probably due to impairments in activation of Akt. Pretreatment with tumor necrosis factor α (TNFα) or interleukin 6 (IL-6) enhanced the expression of Rictor and the migration of renal cancer cells. Mechanistic analysis showed that TNFα induced the activation of NF-κB in RCC cells. Luciferase reporter analysis revealed a NF-κB responding element (-301 to -51 bp) at the promoter region of Rictor. Chromatin immunoprecipitation (ChIP) analysis further confirmed that TNFα-induced binding of p65 with the promoter of Rictor. In a xenograft model, knockdown of Rictor-blocked RCC cells metastasis to the mouse lungs and livers. Taken together, our results suggest that the proinflammatory cytokine TNFα promotes the expression of Rictor through the NF-κB pathway.
Collapse
Affiliation(s)
- Bo Sun
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China
| | - Liwei Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China
| | - Hui Fu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China
| | - Lin Guo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China
| | - Hua Guo
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China.
| | - Ning Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, People's Republic of China. .,Research Center of Basic Medical Science, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, People's Republic of China.
| |
Collapse
|
6
|
Zhang Y, Zhang Z, Yan H. Simvastatin inhibits ischemia/reperfusion injury-induced apoptosis of retinal cells via downregulation of the tumor necrosis factor-α/nuclear factor-κB pathway. Int J Mol Med 2015; 36:399-405. [PMID: 26063345 PMCID: PMC4501639 DOI: 10.3892/ijmm.2015.2244] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/21/2015] [Indexed: 12/01/2022] Open
Abstract
Simvastatin, which is widely used in the prevention and treatment of hyperlipidemia-associated diseases, has been reported to enhance the survival of retinal ganglion cells (RGCs) in a model of retinal ischemia/reperfusion (IR) injury. However, the underlying mechanism of the anti-apoptotic effects of simvastatin on the retina have yet to be elucidated. In the present study, rats were treated with simvastatin or saline for 7 days prior to IR via ligation of the right cephalic artery. The results showed that simvastatin prevented the apoptosis of RGCs and cells in the inner nuclear layer. Furthermore, simvastatin regulated the expression of apoptosis-associated proteins. The expression levels of the anti-apoptotic protein B-cell lymphoma-2 were upregulated 4 and 24 h after IR in the simvastatin/IR group compared to those in the saline/IR group. Conversely, the levels of pro-apoptotic protein Bax were downregulated in the simvastatin/IR group compared to those in the saline/IR group. Furthermore, the results of the present study showed for the first time, to the best of our knowledge, that simvastatin decreased IR injury-induced tumor necrosis factor-α (TNF-α) and nuclear factor-κB (NF-κB) expression in the retina. These findings strongly suggested that simvastatin inhibits apoptosis following IR-induced retinal injury by inhibition of the TNF-α/NF-κB pathway. The present study also provided a rationale for developing therapeutic methods to treat IR-induced retinal injury in the clinic.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhuhong Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
7
|
Simvastatin reduces burn injury-induced splenic apoptosis via downregulation of the TNF-α/NF-κB pathway. Ann Surg 2015; 261:1006-12. [PMID: 24950285 DOI: 10.1097/sla.0000000000000764] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Recent studies have suggested that epidermal burn injuries are associated with inflammation and immune dysfunction. Simvastatin has been shown to possess potent anti-inflammatory properties. Thus, we hypothesized that simvastatin protects against burn-induced apoptosis in the spleen via its anti-inflammatory activity. METHODS Wild-type, tumor necrosis factor alpha knockout (TNF-α KO) and NF-κB KO mice were subjected to full-thickness burn injury or sham treatment. The mice then were treated with or without simvastatin, and the spleen was harvested to measure the extent of apoptosis. Expression levels of TNF-α and NF-κB were also determined in spleen tissue and serum. RESULTS Burn injury induced significant splenic apoptosis and systemic cytokine production. Simvastatin protected the spleen from apoptosis, reduced cytokine production in the serum, and increased the survival rate. Simvastatin decreased burn-induced TNF-α and NF-κB expression in the spleen and serum. TNF-α and NF-κB KO mice demonstrated lower levels of apoptosis in spleen in response to burn injury. Simvastatin did not further decrease burn-caused apoptosis and mortality in either strain of KO mice. CONCLUSIONS Simvastatin reduces burn-induced splenic apoptosis via downregulation of the TNF-α/NF-κB pathway.
Collapse
|
8
|
Hassan GS, Stagg J, Mourad W. Role of CD154 in cancer pathogenesis and immunotherapy. Cancer Treat Rev 2015; 41:431-40. [PMID: 25843228 DOI: 10.1016/j.ctrv.2015.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/11/2023]
Abstract
Many factors and molecules have been investigated as potential players in the pathogenesis or immunosurveillance of cancer. Among these, CD154 has been recognized as a co-stimulatory molecule with high potential for treating cancer, in addition to its contribution in the development of the disease. CD154 was initially described for its pivotal role in T cell-dependent humoral responses via an interaction with its classical receptor, CD40. Subsequent studies showed that CD154 is also implicated in cell-mediated immunity and inflammation via an interaction with CD40 alone or in combination with newly identified receptors, members of the integrin family, leading to the development of chronic inflammatory and autoimmune diseases. In the current article, we present an overview of the role of CD154 as a potential etiological factor in tumors inducing proliferation of malignant cells, their rescue from apoptosis and their invasiveness. In addition, this review describes the immuno-regulatory functions of CD154 against cancer reflected by its stimulation of antigen-presenting cells and the subsequent activation of effector cells, its enhancement of malignant cells' immunogenicity, its modulation of immune settings around tumors, and its initiation of proliferation inhibiting effects in malignant cells. In vitro as well as in vivo studies are outlined and a particular attention is given to clinical studies and progress reached at this point. Findings reviewed herein will improve our knowledge of the role of the CD154 system in cancers from causative to immunotherapeutic functions, paving the way for the identification of new targets for prevention and/or treatment of malignant disorders.
Collapse
Affiliation(s)
- Ghada S Hassan
- Centre de Recherche-Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, Quebec, Canada
| | - John Stagg
- Centre de Recherche-Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, Quebec, Canada
| | - Walid Mourad
- Centre de Recherche-Centre Hospitalier de l'Université de Montréal (CR-CHUM), Montréal, Quebec, Canada.
| |
Collapse
|