1
|
Yao Y, Liu K, Wu Y, Zhou J, Jin H, Zhang Y, Zhu Y. Comprehensive landscape of the functions and prognostic value of RNA binding proteins in uterine corpus endometrial carcinoma. Front Mol Biosci 2022; 9:962412. [PMID: 36262474 PMCID: PMC9574853 DOI: 10.3389/fmolb.2022.962412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The dysregulation of RNA binding proteins (RBPs) is involved in tumorigenesis and progression. However, information on the overall function of RNA binding proteins in Uterine Corpus Endometrial Carcinoma (UCEC) remains to be studied. This study aimed to explore Uterine Corpus Endometrial Carcinoma-associated molecular mechanisms and develop an RNA-binding protein-associated prognostic model. Methods: Differently expressed RNA binding proteins were identified between Uterine Corpus Endometrial Carcinoma tumor tissues and normal tissues by R packages (DESeq2, edgeR) from The Cancer Genome Atlas (TCGA) database. Hub RBPs were subsequently identified by univariate and multivariate Cox regression analyses. The cBioPortal platform, R packages (ggplot2), Human Protein Atlas (HPA), and TIMER online database were used to explore the molecular mechanisms of Uterine Corpus Endometrial Carcinoma. Kaplan-Meier (K-M), Area Under Curve (AUC), and the consistency index (c-index) were used to test the performance of our model. Results: We identified 128 differently expressed RNA binding proteins between Uterine Corpus Endometrial Carcinoma tumor tissues and normal tissues. Seven RNA binding proteins genes (NOP10, RBPMS, ATXN1, SBDS, POP5, CD3EAP, ZC3H12C) were screened as prognostic hub genes and used to construct a prognostic model. Such a model may be able to predict patient prognosis and acquire the best possible treatment. Further analysis indicated that, based on our model, the patients in the high-risk subgroup had poor overall survival (OS) compared to those in the low-risk subgroup. We also established a nomogram based on seven RNA binding proteins. This nomogram could inform individualized diagnostic and therapeutic strategies for Uterine Corpus Endometrial Carcinoma. Conclusion: Our work focused on systematically analyzing a large cohort of Uterine Corpus Endometrial Carcinoma patients in the The Cancer Genome Atlas database. We subsequently constructed a robust prognostic model based on seven RNA binding proteins that may soon inform individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Yong Yao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Kangping Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yuxuan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Jieyu Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Heyue Jin
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yimin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yumin Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Yumin Zhu,
| |
Collapse
|
2
|
Gao X, Oshima K, Ueda T, Nakashima T, Kimura M. A three-dimensional model of RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3. Biochem Biophys Res Commun 2017; 493:1063-1068. [PMID: 28935369 DOI: 10.1016/j.bbrc.2017.09.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 08/31/2017] [Accepted: 09/15/2017] [Indexed: 02/02/2023]
Abstract
Ribonuclease P (RNase P) is an endoribonuclease involved in maturation of the 5'-end of tRNA. We found previously that RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of a catalytic RNase P RNA (PhopRNA) and five protein cofactors designated PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38. The crystal structures of the five proteins have been determined, a three-dimensional (3-D) model of PhopRNA has been constructed, and biochemical data, including protein-RNA interaction sites, have become available. Here, this information was combined to orient the crystallographic structures of the proteins relative to their RNA binding sites in the PhopRNA model. Some alterations were made to the PhopRNA model to improve the fit. In the resulting structure, a heterotetramer composed of PhoPop5 and PhoRpp30 bridges helices P3 and P16 in the PhopRNA C-domain, thereby probably stabilizing a double-stranded RNA structure (helix P4) containing catalytic Mg2+ ions, while a heterodimer of PhoRpp21 and PhoRpp29 locates on a single-stranded loop connecting helices P11 and P12 in the specificity domain (S-domain) in PhopRNA, probably forming an appropriate conformation of the precursor tRNA (pre-tRNA) binding site. The fifth protein PhoRpp38 binds each kink-turn (K-turn) motif in helices P12.1, P12.2, and P16 in PhopRNA. Comparison of the structure of the resulting 3-D model with that of bacterial RNase P suggests transition from RNA-RNA interactions in bacterial RNase P to protein-RNA interactions in archaeal RNase P. The proposed 3-D model of P. horikoshii RNase P will serve as a framework for further structural and functional studies on archaeal, as well as eukaryotic, RNase Ps.
Collapse
Affiliation(s)
- Xuzhu Gao
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Kosuke Oshima
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Toshifumi Ueda
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Takashi Nakashima
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan; Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan
| | - Makoto Kimura
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan; Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka, 812-8581, Japan.
| |
Collapse
|
3
|
Kimura M. Structural basis for activation of an archaeal ribonuclease P RNA by protein cofactors. Biosci Biotechnol Biochem 2017; 81:1670-1680. [PMID: 28715256 DOI: 10.1080/09168451.2017.1353404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA) in all phylogenetic domains. We have found that RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of RNase P RNA (PhopRNA) and five protein cofactors designated PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38. Biochemical characterizations over the past 10 years have revealed that PhoPop5 and PhoRpp30 fold into a heterotetramer and cooperate to activate a catalytic domain (C-domain) in PhopRNA, whereas PhoRpp21 and PhoRpp29 form a heterodimer and function together to activate a specificity domain (S-domain) in PhopRNA. PhoRpp38 plays a role in elevation of the optimum temperature of RNase P activity, binding to kink-turn (K-turn) motifs in two stem-loops in PhopRNA. This review describes the structural and functional information on P. horikoshii RNase P, focusing on the structural basis for the PhopRNA activation by the five RNase P proteins.
Collapse
Affiliation(s)
- Makoto Kimura
- a Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School , Kyushu University , Fukuoka , Japan
| |
Collapse
|
4
|
Jiang D, Izumi K, Ueda T, Oshima K, Nakashima T, Kimura M. Functional characterization of archaeal homologs of human nuclear RNase P proteins Rpp21 and Rpp29 provides insights into the molecular basis of their cooperativity in catalysis. Biochem Biophys Res Commun 2017; 482:68-74. [DOI: 10.1016/j.bbrc.2016.10.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 10/29/2016] [Indexed: 10/20/2022]
|
5
|
Hamasaki M, Hazeyama K, Iwasaki F, Ueda T, Nakashima T, Kakuta Y, Kimura M. Functional implication of archaeal homologues of human RNase P protein pair Pop5 and Rpp30. J Biochem 2015; 159:31-40. [PMID: 26152732 DOI: 10.1093/jb/mvv067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/09/2015] [Indexed: 12/19/2022] Open
Abstract
PhoPop5 and PhoRpp30 in the hyperthermophilic archaeon Pyrococcus horikoshii, homologues of human ribonuclease P (RNase P) proteins hPop5 and Rpp30, respectively, fold into a heterotetramer [PhoRpp30-(PhoPop5)2-PhoRpp30], which plays a crucial role in the activation of RNase P RNA (PhopRNA). Here, we examined the functional implication of PhoPop5 and PhoRpp30 in the tetramer. Surface plasmon resonance (SPR) analysis revealed that the tetramer strongly interacts with an oligonucleotide including the nucleotide sequence of a stem-loop SL3 in PhopRNA. In contrast, PhoPop5 had markedly reduced affinity to SL3, whereas PhoRpp30 had little affinity to SL3. SPR studies of PhoPop5 mutants further revealed that the C-terminal helix (α4) in PhoPop5 functions as a molecular recognition element for SL3. Moreover, gel filtration indicated that PhoRpp30 exists as a monomer, whereas PhoPop5 is an oligomer in solution, suggesting that PhoRpp30 assists PhoPop5 in attaining a functionally active conformation by shielding hydrophobic surfaces of PhoPop5. These results, together with available data, allow us to generate a structural and mechanistic model for the PhopRNA activation by PhoPop5 and PhoRpp30, in which the two C-terminal helices (α4) of PhoPop5 in the tetramer whose formation is assisted by PhoRpp30 act as binding elements and bridge SL3 and SL16 in PhopRNA.
Collapse
Affiliation(s)
- Masato Hamasaki
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and
| | - Kohsuke Hazeyama
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and
| | - Fumihiko Iwasaki
- Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Toshifumi Ueda
- Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Takashi Nakashima
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Yoshimitsu Kakuta
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | - Makoto Kimura
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan and Laboratory of Structural Biology, Division of Bioengineering, Graduate School of Systems Life Sciences, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| |
Collapse
|
6
|
Suematsu K, Ueda T, Nakashima T, Kakuta Y, Kimura M. On archaeal homologs of the human RNase P proteins Pop5 and Rpp30 in the hyperthermophilic archaeon Thermococcus kodakarensis. Biosci Biotechnol Biochem 2015; 79:952-9. [DOI: 10.1080/09168451.2014.1003130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
The ribonuclease P (RNase P) proteins TkoPop5 and TkoRpp30, homologs of human Pop5 and Rpp30, respectively, in the hyperthermophilic archaeon Thermococcus kodakarensis were prepared and characterized with respect to pre-tRNA cleavage activity using the reconstitution system of the well-studied Pyrococcus horikoshii RNase P. The reconstituted particle containing TkoPop5 in place of the P. horikoshii counterpart PhoPop5 retained pre-tRNA cleavage activity comparable to that of the reconstituted P. horikoshii RNase P, while that containing TkoRpp30 instead of its corresponding protein PhoRpp30 had slightly lower activity than the P. horikoshii RNase P. Moreover, we determined crystal structures of TkoRpp30 alone and in complex with TkoPop5. Like their P. horikoshii counterparts, whose structures were solved previously, TkoRpp30 and TkoPop5 fold into TIM barrel and RRM-like fold, respectively. This finding demonstrates that RNase P proteins in T. kodakarensis and P. horikoshii are interchangeable and that their three-dimensional structures are highly conserved.
Collapse
Affiliation(s)
- Kotaro Suematsu
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
| | - Toshifumi Ueda
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Nakashima
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshimitsu Kakuta
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Kimura
- Laboratory of Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka, Japan
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
7
|
Furutani T, Hazeyama K, Ueda T, Tomita S, Imai T, Nakashima T, Kakuta Y, Kimura M. Enhancement of RNA annealing and strand displacement found in archaeal ribonuclease P proteins is conserved in Escherichia coli protein C5 and yeast protein Rpr2. Biosci Biotechnol Biochem 2014; 78:1700-2. [PMID: 25273134 DOI: 10.1080/09168451.2014.925780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We analyzed modes of action of ribonuclease P (RNase P) proteins, C5 in Escherichia coli and Rpr2 in Saccharomyces cerevisiae, using a pair of complementary fluorescence-labeled oligoribonucleotides. Fluorescence resonance energy transfer-based assays revealed that RNA annealing and strand displacement activities found in archaeal RNase P proteins are prevalent in eubacterial (C5) and eukaryotic (Rpr2) RNase P proteins.
Collapse
Affiliation(s)
- Takashi Furutani
- a Laboratory of Biochemistry, Faculty of Agriculture, Department of Bioscience and Biotechnology, Graduate School , Kyushu University , Fukuoka , Japan
| | | | | | | | | | | | | | | |
Collapse
|