1
|
Coppola MA, Pusch M, Imbrici P, Liantonio A. Small Molecules Targeting Kidney ClC-K Chloride Channels: Applications in Rare Tubulopathies and Common Cardiovascular Diseases. Biomolecules 2023; 13:biom13040710. [PMID: 37189456 DOI: 10.3390/biom13040710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Given the key role played by ClC-K chloride channels in kidney and inner ear physiology and pathology, they can be considered important targets for drug discovery. Indeed, ClC-Ka and ClC-Kb inhibition would interfere with the urine countercurrent concentration mechanism in Henle's loop, which is responsible for the reabsorption of water and electrolytes from the collecting duct, producing a diuretic and antihypertensive effect. On the other hand, ClC-K/barttin channel dysfunctions in Bartter Syndrome with or without deafness will require the pharmacological recovery of channel expression and/or activity. In these cases, a channel activator or chaperone would be appealing. Starting from a brief description of the physio-pathological role of ClC-K channels in renal function, this review aims to provide an overview of the recent progress in the discovery of ClC-K channel modulators.
Collapse
Affiliation(s)
| | - Michael Pusch
- Institute of Biophysics, National Research Council, 16149 Genova, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
2
|
Abdelhakim M, McMurray E, Syed AR, Kafkas S, Kamau AA, Schofield PN, Hoehndorf R. DDIEM: drug database for inborn errors of metabolism. Orphanet J Rare Dis 2020; 15:146. [PMID: 32527280 PMCID: PMC7291537 DOI: 10.1186/s13023-020-01428-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inborn errors of metabolism (IEM) represent a subclass of rare inherited diseases caused by a wide range of defects in metabolic enzymes or their regulation. Of over a thousand characterized IEMs, only about half are understood at the molecular level, and overall the development of treatment and management strategies has proved challenging. An overview of the changing landscape of therapeutic approaches is helpful in assessing strategic patterns in the approach to therapy, but the information is scattered throughout the literature and public data resources. RESULTS We gathered data on therapeutic strategies for 300 diseases into the Drug Database for Inborn Errors of Metabolism (DDIEM). Therapeutic approaches, including both successful and ineffective treatments, were manually classified by their mechanisms of action using a new ontology. CONCLUSIONS We present a manually curated, ontologically formalized knowledgebase of drugs, therapeutic procedures, and mitigated phenotypes. DDIEM is freely available through a web interface and for download at http://ddiem.phenomebrowser.net.
Collapse
Affiliation(s)
- Marwa Abdelhakim
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955 Kingdom of Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, PO 23955 Saudi Arabia
| | - Eunice McMurray
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG United Kingdom
| | - Ali Raza Syed
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955 Kingdom of Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, PO 23955 Saudi Arabia
| | - Senay Kafkas
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955 Kingdom of Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, PO 23955 Saudi Arabia
| | - Allan Anthony Kamau
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955 Kingdom of Saudi Arabia
| | - Paul N Schofield
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG United Kingdom
| | - Robert Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955 Kingdom of Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division (CEMSE), King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, PO 23955 Saudi Arabia
| |
Collapse
|
3
|
Sahbani D, Strumbo B, Tedeschi S, Conte E, Camerino GM, Benetti E, Montini G, Aceto G, Procino G, Imbrici P, Liantonio A. Functional Study of Novel Bartter's Syndrome Mutations in ClC-Kb and Rescue by the Accessory Subunit Barttin Toward Personalized Medicine. Front Pharmacol 2020; 11:327. [PMID: 32256370 PMCID: PMC7092721 DOI: 10.3389/fphar.2020.00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type III and IV Bartter syndromes (BS) are rare kidney tubulopathies caused by loss-of-function mutations in the CLCNKB and BSND genes coding respectively for the ClC-Kb chloride channels and accessory subunit barttin. ClC-K channels are expressed in the Henle's loop, distal convoluted tubule, and cortical collecting ducts of the kidney and contribute to chloride absorption and urine concentration. In our Italian cohort, we identified two new mutations in CLCNKB, G167V and G289R, in children affected by BS and previously reported genetic variants, A242E, a chimeric gene and the deletion of the whole CLCNKB. All the patients had hypokalemia and metabolic alkalosis, increased serum renin and aldosterone levels and were treated with a symptomatic therapy. In order to define the molecular mechanisms responsible for BS, we co-expressed ClC-Kb wild type and channels with point mutations with barttin in HEK 293 cells and characterized chloride currents through the patch-clamp technique. In addition, we attempted to revert the functional defect caused by BS mutations through barttin overexpression. G167V and A242E channels showed a drastic current reduction compared to wild type, likely suggesting compromised expression of mutant channels at the plasma membrane. Conversely, G289R channel was similar to wild type raising the doubt that an additional mutation in another gene or other mechanisms could account for the clinical phenotype. Interestingly, increasing ClC-K/barttin ratio augmented G167V and A242E mutants' chloride current amplitudes towards wild type levels. These results confirm a genotype-phenotype correlation in BS and represent a preliminary proof of concept that molecules functioning as molecular chaperones can restore channel function in expression-defective ClC-Kb mutants.
Collapse
Affiliation(s)
- Dalila Sahbani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Bice Strumbo
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvana Tedeschi
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Elisa Benetti
- Nephrology, Dialysis and Transplant Unit, Department of Women's and Children's Health, University-Hospital of Padova, Padova, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis, and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
4
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Teulon J, Planelles G, Sepúlveda FV, Andrini O, Lourdel S, Paulais M. Renal Chloride Channels in Relation to Sodium Chloride Transport. Compr Physiol 2018; 9:301-342. [DOI: 10.1002/cphy.c180024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Abstract
Bartter syndrome is an inherited renal tubular disorder caused by a defective salt reabsorption in the thick ascending limb of loop of Henle, resulting in salt wasting, hypokalemia, and metabolic alkalosis. Mutations of several genes encoding the transporters and channels involved in salt reabsorption in the thick ascending limb cause different types of Bartter syndrome. A poor phenotype-genotype relationship due to the interaction with other cotransporters and different degrees of compensation through alternative pathways is currently reported. However, phenotypic identification still remains the first step to guide the suspicion of Bartter syndrome. Given the rarity of the syndrome, and the lack of genetic characterization in most cases, limited clinical evidence for treatment is available and the therapy is based mainly on the comprehension of renal physiology and relies on the physician's personal experiences. A better understanding of the mutated channels and transporters could possibly generate targets for specific treatment in the future, also encompassing drugs aiming to correct deficiencies in folding or plasma membrane expression of the mutated proteins.
Collapse
Affiliation(s)
- Tamara da Silva Cunha
- Nephrology Division, Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, São Paulo, Brazil,
| | - Ita Pfeferman Heilberg
- Nephrology Division, Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, São Paulo, Brazil,
| |
Collapse
|
7
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
8
|
Tan H, Bungert-Plümke S, Fahlke C, Stölting G. Reduced Membrane Insertion of CLC-K by V33L Barttin Results in Loss of Hearing, but Leaves Kidney Function Intact. Front Physiol 2017; 8:269. [PMID: 28555110 PMCID: PMC5430073 DOI: 10.3389/fphys.2017.00269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022] Open
Abstract
In the mammalian ear, transduction of sound stimuli is initiated by K+ entry through mechano-sensitive channels into inner hair cells. K+ entry is driven by a positive endocochlear potential that is maintained by the marginal cell layer of the stria vascularis. This process requires basolateral K+ import by NKCC1 Na+−2Cl−−K+ co-transporters as well as Cl− efflux through ClC-Ka/barttin or ClC-Kb/barttin channels. Multiple mutations in the gene encoding the obligatory CLC-K subunit barttin, BSND, have been identified in patients with Bartter syndrome type IV. These mutations reduce the endocochlear potential and cause deafness. As CLC-K/barttin channels are also expressed in the kidney, patients with Bartter syndrome IV typically also suffer from salt-wasting hyperuria and electrolyte imbalances. However, there was a single report on a BSND mutation that resulted only in deafness, but not kidney disease. We herein studied the functional consequences of another recently discovered BSND mutation that predicts exchange of valine at position 33 by leucine. We combined whole-cell patch clamp, confocal microscopy and protein biochemistry to analyze how V33L affects distinct functions of barttin. We found that V33L reduced membrane insertion of CLC-K/barttin complexes without altering unitary CLC-K channel function. Our findings support the hypothesis of a common pathophysiology for the selective loss of hearing due to an attenuation of the total chloride conductance in the stria vascularis while providing enough residual function to maintain normal kidney function.
Collapse
Affiliation(s)
- Hua Tan
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Stefanie Bungert-Plümke
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Gabriel Stölting
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum JülichJülich, Germany
| |
Collapse
|
9
|
Stölting G, Bungert-Plümke S, Franzen A, Fahlke C. Carboxyl-terminal Truncations of ClC-Kb Abolish Channel Activation by Barttin Via Modified Common Gating and Trafficking. J Biol Chem 2015; 290:30406-16. [PMID: 26453302 DOI: 10.1074/jbc.m115.675827] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 12/21/2022] Open
Abstract
ClC-K chloride channels are crucial for auditory transduction and urine concentration. Mutations in CLCNKB, the gene encoding the renal chloride channel hClC-Kb, cause Bartter syndrome type III, a human genetic condition characterized by polyuria, hypokalemia, and alkalosis. In recent years, several Bartter syndrome-associated mutations have been described that result in truncations of the intracellular carboxyl terminus of hClC-Kb. We here used a combination of whole-cell patch clamp, confocal imaging, co-immunoprecipitation, and surface biotinylation to study the functional consequences of a frequent CLCNKB mutation that creates a premature stop codon at Trp-610. We found that W610X leaves the association of hClC-Kb and the accessory subunit barttin unaffected, but impairs its regulation by barttin. W610X attenuates hClC-Kb surface membrane insertion. Moreover, W610X results in hClC-Kb channel opening in the absence of barttin and prevents further barttin-mediated activation. To describe how the carboxyl terminus modifies the regulation by barttin we used V166E rClC-K1. V166E rClC-K1 is active without barttin and exhibits prominent, barttin-regulated voltage-dependent gating. Electrophysiological characterization of truncated V166E rClC-K1 demonstrated that the distal carboxyl terminus is necessary for slow cooperative gating. Since barttin modifies this particular gating process, channels lacking the distal carboxyl-terminal domain are no longer regulated by the accessory subunit. Our results demonstrate that the carboxyl terminus of hClC-Kb is not part of the binding site for barttin, but functionally modifies the interplay with barttin. The loss-of-activation of truncated hClC-Kb channels in heterologous expression systems fully explains the reduced basolateral chloride conductance in affected kidneys and the clinical symptoms of Bartter syndrome patients.
Collapse
Affiliation(s)
- Gabriel Stölting
- From the Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich
| | - Stefanie Bungert-Plümke
- From the Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich
| | - Arne Franzen
- From the Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich
| | - Christoph Fahlke
- From the Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich
| |
Collapse
|
10
|
Kamiya K. Inner ear cell therapy targeting hereditary deafness by activation of stem cell homing factors. Front Pharmacol 2015; 6:2. [PMID: 25674062 PMCID: PMC4307216 DOI: 10.3389/fphar.2015.00002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/06/2015] [Indexed: 11/28/2022] Open
Abstract
Congenital deafness affects about 1 in 1000 children and more than half of them have a genetic background such as Connexin26 (CX26) gene mutation. Inner ear cell therapy for sensorineural hearing loss has been expected to be an effective therapy for hereditary deafness. Previously, we developed a novel strategy for inner ear cell therapy using bone marrow mesenchymal stem cells as a supplement for cochlear fibrocytes functioning for cochlear ion transport. For cell therapy targeting hereditary deafness, a more effective cell delivery system to induce the stem cells into cochlear tissue is required, because gene mutations affect all cochlear cells cochlear cells expressing genes such as GJB2 encoding CX26. Stem cell homing is one of the crucial mechanisms to be activated for efficient cell delivery to the cochlear tissue. In our study, monocyte chemotactic protein-1, stromal cell-derived factor-1 and their receptors were found to be a key regulator for stem cell recruitment to the cochlear tissue. Thus, the activation of stem cell homing may be an efficient strategy for hearing recovery in hereditary deafness.
Collapse
Affiliation(s)
- Kazusaku Kamiya
- Department of Otorhinolaryngology, Faculty of Medicine, Juntendo University , Tokyo, Japan
| |
Collapse
|