1
|
Huang C, Jiang T, Pan W, Feng T, Zhou X, Wu Q, Ma F, Dai J. Ubiquitination of NS1 Confers Differential Adaptation of Zika Virus in Mammalian Hosts and Mosquito Vectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408024. [PMID: 39159062 PMCID: PMC11497017 DOI: 10.1002/advs.202408024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Indexed: 08/21/2024]
Abstract
Arboviruses, transmitted by medical arthropods, pose a serious health threat worldwide. During viral infection, Post Translational Modifications (PTMs) are present on both host and viral proteins, regulating multiple processes of the viral lifecycle. In this study, a mammalian E3 ubiquitin ligase WWP2 (WW domain containing E3 ubiquitin ligase 2) is identified, which interacts with the NS1 protein of Zika virus (ZIKV) and mediates K63 and K48 ubiquitination of Lys 265 and Lys 284, respectively. WWP2-mediated NS1 ubiquitination leads to NS1 degradation via the ubiquitin-proteasome pathway, thereby inhibiting ZIKV infection in mammalian hosts. Simultaneously, it is found Su(dx), a protein highly homologous to host WWP2 in mosquitoes, is capable of ubiquitinating NS1 in mosquito cells. Unexpectedly, ubiquitination of NS1 in mosquitoes does not lead to NS1 degradation; instead, it promotes viral infection in mosquitoes. Correspondingly, the NS1 K265R mutant virus is less infectious to mosquitoes than the wild-type (WT) virus. The above results suggest that the ubiquitination of the NS1 protein confers different adaptations of ZIKV to hosts and vectors, and more importantly, this explains why NS1 K265-type strains have become predominantly endemic in nature. This study highlights the potential application in antiviral drug and vaccine development by targeting viral proteins' PTMs.
Collapse
Affiliation(s)
- Chenxiao Huang
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
- Department of Clinical LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu School of Nanjing Medical UniversitySuzhou215000China
| | - Tao Jiang
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Wen Pan
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Tingting Feng
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| | - Xia Zhou
- School of Biology and Basic Medical ScienceSuzhou Medical College of Soochow UniversitySuzhou215000China
| | - Qihan Wu
- Shanghai‐MOST Key Laboratory of Health and Disease GenomicsNHC Key Lab of Reproduction RegulationShanghai Institute for Biomedical and Pharmaceutical TechnologiesShanghai200000China
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammationand CAMS Key Laboratory of Synthetic Biology Regulatory ElementsSuzhou Institute of Systems MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeSuzhou215123China
| | - Jianfeng Dai
- Institutes of Biology and Medical SciencesMOE Key Laboratory of Geriatric Diseases and ImmunologyJiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhou215000China
| |
Collapse
|
2
|
Mandal K, Tomar SK, Kumar Santra M. Decoding the ubiquitin language: Orchestrating transcription initiation and gene expression through chromatin remodelers and histones. Gene 2024; 904:148218. [PMID: 38307220 DOI: 10.1016/j.gene.2024.148218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Eukaryotic transcription is a finely orchestrated process and it is controlled by transcription factors as well as epigenetic regulators. Transcription factors and epigenetic regulators undergo different types of posttranslational modifications including ubiquitination to control transcription process. Ubiquitination, traditionally associated with protein degradation, has emerged as a crucial contributor to the regulation of chromatin structure through ubiquitination of histone and chromatin remodelers. Ubiquitination introduces new layers of intricacy to the regulation of transcription initiation through controlling the equilibrium between euchromatin and heterochromatin states. Nucleosome, the fundamental units of chromatin, spacing in euchromatin and heterochromatin states are regulated by histone modification and chromatin remodeling complexes. Chromatin remodeling complexes actively sculpt the chromatin architecture and thereby influence the transcriptional states of genes. Therefore, understanding the dynamic behavior of nucleosome spacing is critical as it impacts various cellular functions through controlling gene expression profiles. In this comprehensive review, we discussed the intricate interplay between ubiquitination and transcription initiation, and illuminated the underlying molecular mechanisms that occur in a variety of biological contexts. This exploration sheds light on the complex regulatory networks that govern eukaryotic transcription, providing important insights into the fine orchestration of gene expression and chromatin dynamics.
Collapse
Affiliation(s)
- Kartik Mandal
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Shiva Kumar Tomar
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Manas Kumar Santra
- Cancer Biology Division, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|
3
|
You S, Xu J, Guo Y, Guo X, Zhang Y, Zhang N, Sun G, Sun Y. E3 ubiquitin ligase WWP2 as a promising therapeutic target for diverse human diseases. Mol Aspects Med 2024; 96:101257. [PMID: 38430667 DOI: 10.1016/j.mam.2024.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Mammalian E3 ubiquitin ligases have emerged in recent years as critical regulators of cellular homeostasis due to their roles in targeting substrate proteins for ubiquitination and triggering subsequent downstream signals. In this review, we describe the multiple roles of WWP2, an E3 ubiquitin ligase with unique and important functions in regulating a wide range of biological processes, including DNA repair, gene expression, signal transduction, and cell-fate decisions. As such, WWP2 has evolved to play a key role in normal physiology and diseases, such as tumorigenesis, skeletal development and diseases, immune regulation, cardiovascular disease, and others. We attempt to provide an overview of the biochemical, physiological, and pathophysiological roles of WWP2, as well as open questions for future research, particularly in the context of putative therapeutic opportunities.
Collapse
Affiliation(s)
- Shilong You
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiaqi Xu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yushan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofan Guo
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China; NHC Key Laboratory of Advanced Reproductive Medicine and Fertility, National Health Commission, China Medical University, Shenyang, Liaoning, China.
| | - Guozhe Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Zhang N, Zhang Y, Chen Y, Qian H, Wu B, Lu S, You S, Xu W, Zou Y, Huang X, Wang W, Liu J, Li D, Cao L, Sun Y. BAF155 promotes cardiac hypertrophy and fibrosis through inhibition of WWP2-mediated PARP1 ubiquitination. Cell Discov 2023; 9:46. [PMID: 37156792 PMCID: PMC10167234 DOI: 10.1038/s41421-023-00555-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023] Open
Affiliation(s)
- Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, China Medical University, Shenyang, Liaoning, China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yong Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Hao Qian
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Boquan Wu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Saien Lu
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shilong You
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wancheng Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yuanming Zou
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyue Huang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wenbin Wang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingwei Liu
- Institute of School of Basic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Da Li
- Key Laboratory of Reproductive and Genetic Medicine, National Health Commission, China Medical University, Shenyang, Liaoning, China
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liu Cao
- Institute of School of Basic Medicine, China Medical University, Shenyang, Liaoning, China
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Liu W, Wang Z, Liu S, Zhang X, Cao X, Jiang M. RNF138 inhibits late inflammatory gene transcription through degradation of SMARCC1 of the SWI/SNF complex. Cell Rep 2023; 42:112097. [PMID: 36800290 DOI: 10.1016/j.celrep.2023.112097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/09/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
As one of the core components of the switching or sucrose non-fermentable (SWI/SNF) complex, SMARCC1 (BAF155, SRG3) plays essential roles in activation of late inflammatory genes in response to microbial challenge. However, little is known about the mechanism of how SMARCC1 regulates the inflammatory innate response. Via functional screening, we identify the nuclear E3 ubiquitin ligase RNF138 as a negative regulator in the inflammatory innate response and show that RNF138 interacts with SMARCC1 and mediates its K48-linked polyubiquitination at position Lys643 and proteasomal degradation. As a result, the catalytic activity of RNF138 fine-tunes the kinetics of late inflammatory gene transcription by inhibiting chromatin remodeling at SWI/SNF-regulated gene loci. Reduced RNF138 and increased SMARCC1 in monocytes of rheumatoid arthritis patients are observed. These results provide mechanistic insight into the interplay among nucleosome remodeling, inflammation, and ubiquitylation and underscore the important role of the E3 ubiquitin ligases in controlling the extent and duration of inflammatory responses.
Collapse
Affiliation(s)
- Wei Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ziqiao Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Shuo Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China.
| | - Minghong Jiang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China.
| |
Collapse
|
6
|
Zhang R, Zhang J, Luo W, Luo Z, Shi S. WWP2 Is One Promising Novel Oncogene. Pathol Oncol Res 2018; 25:443-446. [PMID: 30415470 DOI: 10.1007/s12253-018-0506-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/15/2018] [Indexed: 12/25/2022]
Abstract
WWP2 is an E3 ubiquitin ligase and plays an important role in regulation of many cellular biological activities through ubiquitination and degradation of its substrates. Recently accumulating evidences indicate that WWP2 plays a crucial part in the pathogenesis in different types of tumors. In this report, the role of this gene especially in tumorigenesis was reviewed. WWP2 is dysregulated in various of tumors, and it promotes carcinogenesis mainly through PTEN/Akt signaling pathway. WWP2 also participates in anti-cancer agents' sensitivity, indicating WWP2 may be a novel target for cancer treatment. WWP2 is one promising novel oncogene.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Thoracic Surgery, The Seventh People's Hospital of Chengdu, Chengdu, Sichuan, 640021, People's Republic of China
| | - Jianwu Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong, Sichuan, 637100, People's Republic of China
| | - Wei Luo
- Department of Respiratory Medicine, The People's Hospital of Leshan, Leshan, Sichuan, 640000, People's Republic of China
| | - Zhuang Luo
- Department of Pumnary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, People's Republic of China.
| | - Shaoqing Shi
- Department of Pumnary and Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, People's Republic of China.
| |
Collapse
|
7
|
Tatarskiy VV, Simonov YP, Shcherbinin DS, Brechalov AV, Georgieva SG, Soshnikova NV. Stability of the PHF10 subunit of PBAF signature module is regulated by phosphorylation: role of β-TrCP. Sci Rep 2017; 7:5645. [PMID: 28717195 PMCID: PMC5514133 DOI: 10.1038/s41598-017-05944-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
The PBAF chromatin-remodeling complexes are multi-protein machines, regulating expression of genes involved in proliferation and differentiation. PHF10 is a subunit of the PBAF essential for its association with chromatin. Mammalian PHF10 is expressed as four ubiquitous isoforms, which are alternatively incorporated in the complex and differ by their influence on transcription of target genes. PHF10 have different domain structure and two of them (PHF10-S isoforms) lack C-terminal PHD domains, which enables their phosphorylation by CK-1. Here we have found that PBAF subunits have low turnover rate, except for PHF10 which has much lower half-life, and is degraded by β-TrCP. The β-TrCP knockdown stabilizes PBAF core subunits - BRG1 and BAF155 and specific subunits - PHF10, BAF200, BAF180 and BRD7. PHF10 isoforms contain two non-canonical β-TrCP degrons and are degraded by β-TrCP in a phospho-dependent manner. But phosphorylation of PHF10-S degrons by CK-1, contrary to previously described degrons, prevents their degradation. Targeted molecular docking demonstrated that phosphorylated forms of PHF10 bind to β-TrCP with much lower affinity than non-phosphorylated ones, contrary to previously described degrons. This unorthodox mechanism proposes that phosphorylation of β-TrCP degrons by CK-1 could not only degrade a set of proteins, but also stabilize a different set of targets.
Collapse
Affiliation(s)
- Victor V Tatarskiy
- Laboratory of Tumor Cell Death, N.N. Blokhin Russian Cancer Research Center, Kashirskoye Shosse 24, Moscow, 115478, Russia
| | - Yuriy P Simonov
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, 119991, Russia
| | - Dmitrii S Shcherbinin
- Laboratory of Structure Bioinformatics, Institute of Biomedical Chemistry (IBMC), Pogodinskaya street 10 building 8, Moscow, 119121, Russia
| | - Alexander V Brechalov
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, 119991, Russia
| | - Sofia G Georgieva
- Department of Eukariotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow, 119991, Russia. .,Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, 119991, Russia.
| | - Nataliya V Soshnikova
- Department of Eukariotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, Vavilov Str. 34/5, Moscow, 119991, Russia.
| |
Collapse
|
8
|
Jiang J, Wang N, Jiang Y, Tan H, Zheng J, Chen G, Jia Z. Characterization of substrate binding of the WW domains in human WWP2 protein. FEBS Lett 2015; 589:1935-42. [PMID: 25999310 DOI: 10.1016/j.febslet.2015.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/26/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
WW domains harbor substrates containing proline-rich motifs, but the substrate specificity and binding mechanism remain elusive for those WW domains less amenable for structural studies, such as human WWP2 (hWWP2). Herein we have employed multiple techniques to investigate the second WW domain (WW2) in hWWP2. Our results show that hWWP2 is a specialized E3 for PPxY motif-containing substrates only and does not recognize other amino acids and phospho-residues. The strongest binding affinity of WW2, and the incompatibility between each WW domain, imply a novel relationship, and our SPR experiment reveals a dynamic binding mode in Class-I WW domains for the first time. The results from alanine-scanning mutagenesis and modeling further point to functionally conserved residues in WW2.
Collapse
Affiliation(s)
- Jiahong Jiang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Nan Wang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Yafei Jiang
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Hongwei Tan
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, China.
| | - Guangju Chen
- College of Chemistry, Beijing Normal University, Beijing, China
| | - Zongchao Jia
- Department of Biochemical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|