1
|
Allen MC, Karplus PA, Mehl RA, Cooley RB. Genetic Encoding of Phosphorylated Amino Acids into Proteins. Chem Rev 2024; 124:6592-6642. [PMID: 38691379 PMCID: PMC11658404 DOI: 10.1021/acs.chemrev.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.
Collapse
Affiliation(s)
- Michael C. Allen
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - P. Andrew Karplus
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Ryan A. Mehl
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Richard B. Cooley
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| |
Collapse
|
2
|
Lee W, Mulay SV, Shimodaira S, Abdillah A, Palma J, Kim Y, Yudhistira T, Churchill DG. Didactic approach recounting advances and limitations in novel glutathione and cysteine detection (reduced GSH probe) with mixed coumarin, aldehyde, and phenyl-selenium chemistry. Methods Enzymol 2020; 640:267-289. [PMID: 32560802 DOI: 10.1016/bs.mie.2020.04.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe the pertinent research steps and analysis, many of which are chemical, to achieve a novel molecular probe for glutathione (GSH) which has been published and patented based on two recent articles: "Exceptional time response, stability and selectivity in doubly-activated phenyl selenium-based glutathione-selective platform" and "Enhanced Doubly Activated Dual Emission Fluorescent Probes for Selective Imaging of Glutathione or Cysteine in Living Systems" (Kim et al., 2015; Mulay et al., 2018). The papers involve coumarin probes. Reaction/detection unfolds with aminothiol attack at an electrophilic ring carbon position. An adjacent -CHO group is heavily involved in resonance aspects of the C-Se position, as well as the binding of the pendant N-group; the coumarin lactone carbonyl also allows for resonance to be achieved (vide infra). The leaving group, -SePh, while precedented in some systems, depends on electronic tuning (Fig. 1). For 1, the response times with GSH was ~100ms; a 100-fold fluorescence increase is observed (Compound 1). The probe also reacts with cysteine (Cys) and homocysteine (Hcy), albeit differently. For glutathione probing, the greater wavelength maxima (1: 550nm, DACP-1: 555nm, DACP-2: 590nm) enabled eventual cell studies (confocal microscopy) and animal studies. The limits of detection (LOD, 1: 270nM DACP-1: 10.1nM DACP-2: 17.0nM), as measured using the 3σ/k method. We provide a didactic presentation from probe conception to probe in vivo testing, etc., with additional considerations presented; a variety of factors/issues (2.1-2.28) help maintain a realistic sequence, a flow from wider to narrower, of the factors that go into developing medical, biological and neurodegenerative disease-related probes, meant to help other researchers follow our intention, gain perspective, and overcome current limitations.
Collapse
Affiliation(s)
- Woohyun Lee
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sandip V Mulay
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Shingo Shimodaira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Ariq Abdillah
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jaymee Palma
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Youngsam Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Korea Institute of Science and Technology (KIST), Saarbrücken, Germany
| | - Tesla Yudhistira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Laboratory of Bioimaging and Pathology (UMR-7021), Faculty of Pharmacy, University of Strasbourg, Strasbourg, France
| | - David G Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, Republic of Korea; KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering), Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Kumar P, Schilderink N, Subramaniam V, Huber M. Membrane Binding of Parkinson's Protein α-Synuclein: Effect of Phosphorylation at Positions 87 and 129 by the S to D Mutation Approach. Isr J Chem 2017; 57:762-770. [PMID: 28919642 PMCID: PMC5573911 DOI: 10.1002/ijch.201600083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Indexed: 11/10/2022]
Abstract
Human α-synuclein, a protein relevant in the brain with so-far unknown function, plays an important role in Parkinson's disease. The phosphorylation state of αS was related to the disease, prompting interest in this process. The presumed physiological function and the disease action of αS involves membrane interaction. Here, we study the effect of phosphorylation at positions 87 and 129, mimicked by the mutations S87A, S129A (nonphosphorylated) and S87D, S129D (phosphorylated) on membrane binding. Local binding is detected by spin-label continuous-wave electron paramagnetic resonance. For S87A/D, six positions (27, 56, 63, 69, 76, and 90) are probed; and for S129A/D, three (27, 56, and 69). Binding to large unilamellar vesicles of 100 nm diameter of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine in a 1 : 1 composition is not affected by the phosphorylation state of S129. For phosphorylation at S87, local unbinding of αS from the membrane is observed. We speculate that modulating the local membrane affinity by phosphorylation could tune the way αS interacts with different membranes; for example, tuning its membrane fusion activity.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Physics, Huygens-Kamerlingh-Onnes LaboratoryLeiden UniversityLeidenThe Netherlands
| | - Nathalie Schilderink
- Nanobiophysics, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
| | - Vinod Subramaniam
- Nanobiophysics, MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
- FOM Institute AMOLFAmsterdamThe Netherlands
- Vrije Universiteit of AmsterdamAmsterdamThe Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kamerlingh-Onnes LaboratoryLeiden UniversityLeidenThe Netherlands
| |
Collapse
|
4
|
Neumann-Staubitz P, Neumann H. The use of unnatural amino acids to study and engineer protein function. Curr Opin Struct Biol 2016; 38:119-28. [DOI: 10.1016/j.sbi.2016.06.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 12/21/2022]
|
5
|
Abstract
Alkali metals, especially sodium and potassium, are plentiful and vital in biological systems. They take on important roles in health and disease. Such roles include the regulation of homeostasis, osmosis, blood pressure, electrolytic equilibria, and electric current. However, there is a limit to our present understanding; the ions have a great ability and capacity for action in health and disease, much greater than our current understanding. For the regulation of physiological homeostasis, there is a crucial regulator (renin-angiotensin system, RAS), found at both peripheral and central levels. Misregulation of the Na(+)-K(+) pump, and sodium channels in RAS are important for the understanding of disease progression, hypertension, diabetes, and neurodegenerative diseases, etc. In particular, RAS displays direct or indirect interaction important to Parkinson's disease (PD). In this chapter, the relationship between the regulation of sodium/potassium concentration and PD was sought. In addition, some recent biochemical and clinical findings are also discussed that help describe sodium and potassium in the context of traumatic brain injury (TBI). TBI is caused from the heavy striking of the head; this strongly affects ion flux in the affected tissue (brain) and damages cellular regulation systems. Thus, inappropriate concentrations of ions (hyper- and hyponatremia, and hyper- and hypokalemia) will perturb homeostasis giving rise to important and far reaching effects. These changes also impact osmotic pressure and the concentration of other metal ions, such as the calcium(II) ion.
Collapse
|
6
|
Muñoz P, Cardenas S, Huenchuguala S, Briceño A, Couve E, Paris I, Segura-Aguilar J. DT-Diaphorase Prevents Aminochrome-Induced Alpha-Synuclein Oligomer Formation and Neurotoxicity. Toxicol Sci 2015; 145:37-47. [PMID: 25634539 DOI: 10.1093/toxsci/kfv016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
It was reported that aminochrome induces the formation of alpha synuclein (SNCA) oligomers during dopamine oxidation. We found that DT-diaphorase (NQO1) prevents the formation of SNCA oligomers in the presence of aminochrome determined by Western blot, transmission electron microscopy, circular dichroism, and thioflavin T fluorescence, suggesting a protective role of NQO1 by preventing the formation of SNCA oligomers in dopaminergic neurons. In order to test NQO1 protective role in SNCA neurotoxicity in cellular model, we overexpressed SNCA in both RCSN-3 cells (wild-type) and RCSN-3Nq7 cells, which have constitutive expression of a siRNA against NQO1. The expression of SNCA in RCSN-3SNCA and RCSN-3Nq7SNCA cells increased 4.2- and 4.4-fold, respectively. The overexpression of SNCA in RCSN-3Nq7SNCA cells induces a significant increase in cell death of 2.8- and 3.2-fold when they were incubated with 50 and 70 µM aminochrome, respectively. The cell death was found to be of apoptotic character determined by annexin/propidium iodide technique with flow cytometry and DNA laddering. A Western blot demonstrated that SNCA in RCSN-3SNCA is only found in monomer form both in the presence of 20 µM aminochrome or cell culture medium contrasting with RCSN-3Nq7SNCA cells where the majority SNCA is found as oligomer. The antioligomer compound scyllo-inositol induced a significant decrease in aminochrome-induced cell death in RCSN-3Nq7SNCA cells in comparison to cells incubated in the absence of scyllo-inositol. Our results suggest that NQO1 seems to play an important role in the prevention of aminochrome-induced SNCA oligomer formation and SNCA oligomers neurotoxicity in dopaminergic neurons.
Collapse
Affiliation(s)
- Patricia Muñoz
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| | - Sergio Cardenas
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| | - Sandro Huenchuguala
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| | - Andrea Briceño
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| | - Eduardo Couve
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| | - Irmgard Paris
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| | - Juan Segura-Aguilar
- *Department of Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile; Faculty of Engineering, Central University of Chile; Department of Biology, University of Valparaiso, Chile; and Department Basic Sciences, University of Santo Tomas, Viña del Mar, Chile
| |
Collapse
|