1
|
Wang J, Chen L, Qin S, Xie M, Luo SZ, Li W. Advances in biosynthesis of peptide drugs: Technology and industrialization. Biotechnol J 2024; 19:e2300256. [PMID: 37884278 DOI: 10.1002/biot.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Peptide drugs are developed from endogenous or synthetic peptides with specific biological activities. They have advantages of strong target specificity, high efficacy and low toxicity, thus showing great promise in the treatment of many diseases such as cancer, infections, and diabetes. Although an increasing number of peptide drugs have entered market in recent years, the preparation of peptide drug substances is yet a bottleneck problem for their industrial production. Comparing to the chemical synthesis method, peptide biosynthesis has advantages of simple synthesis, low cost, and low contamination. Therefore, the biosynthesis technology of peptide drugs has been widely used for manufacturing. Herein, we reviewed the development of peptide drugs and recent advances in peptide biosynthesis technology, in order to shed a light to the prospect of industrial production of peptide drugs based on biosynthesis technology.
Collapse
Affiliation(s)
- Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Mingyuan Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| |
Collapse
|
2
|
Trisciuzzi D, Siragusa L, Baroni M, Autiero I, Nicolotti O, Cruciani G. Getting Insights into Structural and Energetic Properties of Reciprocal Peptide-Protein Interactions. J Chem Inf Model 2022; 62:1113-1125. [PMID: 35148095 DOI: 10.1021/acs.jcim.1c01343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide-protein interactions play a key role for many cellular and metabolic processes involved in the onset of largely spread diseases such as cancer and neurodegenerative pathologies. Despite the progress in the structural characterization of peptide-protein interfaces, the in-depth knowledge of the molecular details behind their interactions is still a daunting task. Here, we present the first comprehensive in silico morphological and energetic study of peptide binding sites by focusing on both peptide and protein standpoints. Starting from the PixelDB database, a nonredundant benchmark collection of high-quality 3D crystallographic structures of peptide-protein complexes, a classification analysis of the most representative categories based on the nature of each cocrystallized peptide has been carried out. Several interpretable geometrical and energetic descriptors have been computed both from peptide and target protein sides in the attempt to unveil physicochemical and structural causative correlations. Finally, we investigated the most frequent peptide-protein residue pairs at the binding interface and made extensive energetic analyses, based on GRID MIFs, with the aim to study the peptide affinity-enhancing interactions to be further exploited in rational drug design strategies.
Collapse
Affiliation(s)
- Daniela Trisciuzzi
- Department of Pharmacy, Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy.,Molecular Horizon s.r.l., Via Montelino, 30, 06084 Bettona (PG), Italy
| | - Lydia Siragusa
- Molecular Horizon s.r.l., Via Montelino, 30, 06084 Bettona (PG), Italy.,Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Massimo Baroni
- Molecular Discovery Ltd., Kinetic Business Centre, Theobald Street, Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Ida Autiero
- Molecular Horizon s.r.l., Via Montelino, 30, 06084 Bettona (PG), Italy.,National Research Council, Institute of Biostructures and Bioimaging, 80138 Naples, Italy
| | - Orazio Nicolotti
- Department of Pharmacy, Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", 70125 Bari, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, via Elce di Sotto, 8, 06123 Perugia (PG), Italy
| |
Collapse
|
3
|
Lammi C, Aiello G, Boschin G, Arnoldi A. Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
4
|
Abriata LA. Structural database resources for biological macromolecules. Brief Bioinform 2017; 18:659-669. [PMID: 27273290 DOI: 10.1093/bib/bbw049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 12/30/2022] Open
Abstract
This Briefing reviews the widely used, currently active, up-to-date databases derived from the worldwide Protein Data Bank (PDB) to facilitate browsing, finding and exploring its entries. These databases contain visualization and analysis tools tailored to specific kinds of molecules and interactions, often including also complex metrics precomputed by experts or external programs, and connections to sequence and functional annotation databases. Importantly, updates of most of these databases involves steps of curation and error checks based on specific expertise about the subject molecules or interactions, and removal of sequence redundancy, both leading to better data sets for mining studies compared with the full list of raw PDB entries. The article presents the databases in groups such as those aimed to facilitate browsing through PDB entries, their molecules and their general information, those built to link protein structure with sequence and dynamics, those specific for transmembrane proteins, nucleic acids, interactions of biomacromolecules with each other and with small molecules or metal ions, and those concerning specific structural features or specific protein families. A few webservers directly connected to active databases, and a few databases that have been discontinued but would be important to have back, are also briefly commented on. Along the Briefing, sample cases where these databases have been used to aid structural studies or advance our knowledge about biological macromolecules are referenced. A few specific examples are also given where using these databases is easier and more informative than using raw PDB data.
Collapse
|
5
|
Frappier V, Duran M, Keating AE. PixelDB: Protein-peptide complexes annotated with structural conservation of the peptide binding mode. Protein Sci 2017; 27:276-285. [PMID: 29024246 DOI: 10.1002/pro.3320] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/09/2017] [Accepted: 10/09/2017] [Indexed: 11/08/2022]
Abstract
PixelDB, the Peptide Exosite Location Database, compiles 1966 non-redundant, high-resolution structures of protein-peptide complexes filtered to minimize the impact of crystal packing on peptide conformation. The database is organized to facilitate study of structurally conserved versus non-conserved elements of protein-peptide engagement. PixelDB clusters complexes based on the structural similarity of the peptide-binding protein, and by comparing complexes within a cluster highlights examples of domains that engage peptides using more than one binding mode. PixelDB also identifies conserved peptide core structural motifs characteristic of each binding mode. Peptide regions that flank core motifs often make non-structurally conserved interactions with the protein surface in regions we call exosites. Many examples establish that exosite contacts can be important for enhancing protein binding and interaction specificity. PixelDB provides a resource for computational and structural biologists to study, model, and predict core-motif and exosite-contacting peptide interactions. PixelDB is available to the community without restriction in a convenient flat-file format with accompanying visualization tools.
Collapse
Affiliation(s)
- Vincent Frappier
- MIT Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Madeleine Duran
- MIT Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Amy E Keating
- MIT Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,MIT Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
6
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
7
|
Schindler CEM, de Vries SJ, Zacharias M. Fully Blind Peptide-Protein Docking with pepATTRACT. Structure 2015; 23:1507-1515. [PMID: 26146186 DOI: 10.1016/j.str.2015.05.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 02/02/2023]
Abstract
Peptide-protein interactions are ubiquitous in the cell and form an important part of the interactome. Computational docking methods can complement experimental characterization of these complexes, but current protocols are not applicable on the proteome scale. Here, we present a new fully blind flexible peptide-protein docking protocol, pepATTRACT, which combines a rapid coarse-grained global peptide docking search of the entire protein surface with a two-stage atomistic flexible refinement. Global unbound-unbound docking yielded near-native models for 70% of the docking cases when testing the protocol on the largest benchmark of peptide-protein complexes available to date. This performance is similar to that of state-of-the-art local docking protocols that rely on information about the binding site. Upon restricting the search to the peptide binding region, the resulting pepATTRACT-local approach outperformed existing methods. Docking scripts for pepATTRACT and pepATTRACT-local can be generated via a web interface at www.attract.ph.tum.de/peptide.html.
Collapse
Affiliation(s)
- Christina E M Schindler
- Physics Department T38, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Sjoerd J de Vries
- Physics Department T38, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Martin Zacharias
- Physics Department T38, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany.
| |
Collapse
|
8
|
Rentzsch R, Renard BY. Docking small peptides remains a great challenge: an assessment using AutoDock Vina. Brief Bioinform 2015; 16:1045-56. [PMID: 25900849 DOI: 10.1093/bib/bbv008] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Indexed: 02/03/2023] Open
Abstract
There is a growing interest in the mechanisms and the prediction of how flexible peptides bind proteins, often in a highly selective and conserved manner. While both existing small-molecule docking methods and custom protocols can be used, even short peptides make difficult targets owing to their high torsional flexibility. Any benchmarking should therefore start with those. We compiled a meta-data set of 47 complexes with peptides up to five residues, based on 11 related studies from the past decade. Although their highly varying strategies and constraints preclude direct, quantitative comparisons, we still provide a comprehensive overview of the reported results, using a simple yet stringent measure: the quality of the top-scoring peptide pose. Using the entire data set, this is augmented by our own benchmark of AutoDock Vina, a freely available, fast and widely used docking tool. It particularly addresses non-expert users and was therefore implemented in a highly integrated manner. Guidelines addressing important issues such as the amount of sampling required for result reproducibility are so far lacking. Using peptide docking as an example, this is the first study to address these issues in detail. Finally, to encourage further, standardized benchmarking efforts, the compiled data set is made available in an accessible, transparent and extendable manner.
Collapse
|
9
|
Bioactive peptides and protein hydrolysates: research trends and challenges for application as nutraceuticals and functional food ingredients. Curr Opin Food Sci 2015. [DOI: 10.1016/j.cofs.2014.09.005] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Stagljar I. Editorial for ''advances in OMICs-based disciplines". Biochem Biophys Res Commun 2014; 445:681-682. [PMID: 24691180 DOI: 10.1016/j.bbrc.2014.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Igor Stagljar
- Donnelly Centre, Department of Molecular Genetics, Department of Biochemistry, University of Toronto, 160 College Street, Room 1204, Toronto, Ontario M5S 3E1, Canada.
| |
Collapse
|