1
|
Cho SK, Gwon S, Kim HA, Kim J, Cho SY, Kim DE, Chae JH, Park DH, Hwang YK. Abnormal Development of Neural Stem Cell Niche in the Dentate Gyrus of Menkes Disease. Int J Stem Cells 2022; 15:270-282. [PMID: 35220279 PMCID: PMC9396019 DOI: 10.15283/ijsc21088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Menkes disease (MNK) is a rare X-linked recessive disease, caused by mutations in the copper transporting ATP7A gene that is required for copper homeostasis. MNK patients experience various clinical symptoms including neurological defects that are closely related to the prognosis of MNK patients. Neural stem cells (NSCs) in the hippocampal dentate gyrus (DG) produce new neurons throughout life, and defects in DG neurogenesis are often correlated with cognitive and behavioral problems. However, neurodevelopmental defects in the DG during postnatal period in MNK have not been understood yet. Methods and Results Mottled-brindled (MoBr/y) mice (MNK mice) and littermate controls were used in this study. In vivo microCT imaging and immunohistochemistry results demonstrate that blood vasculatures in hippocampus are abnormally decreased in MNK mice. Furthermore, postnatal establishment of NSC population and their neurogenesis are severely compromised in the DG of MNK mice. In addition, in vitro analyses using hippocampal neurosphere culture followed by immunocytochemistry and immunoblotting suggest that neurogenesis from MNK NSCs is also significantly compromised, corresponding to defective neurogenic gene expression in MNK derived neurons. Conclusions Our study is the first reports demonstrating that improper expansion of the postnatal NSC population followed by significant reduction of neurogenesis may contribute to neurodevelopmental symptoms in MNK. In conclusion, our results provide new insight into early neurodevelopmental defects in MNK and emphasize the needs for early diagnosis and new therapeutic strategies in the postnatal central nerve system damage of MNK patients.
Collapse
Affiliation(s)
- Sung-kuk Cho
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | - Suhyun Gwon
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | - Hyun Ah Kim
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | - Jiwon Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Sung Yoo Cho
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | - Dong-Eog Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Hwi Park
- Cell Therapy Research Center, GC Cell, Yongin, Korea
| | | |
Collapse
|
2
|
Li L, Zhang D, Ren Y, Ye S, Zheng B, Liu S, Zaheer Ahmed J, Li M, Shi D, Huang B. The modification of mitochondrial energy metabolism and histone of goat somatic cells under small molecules compounds induction. Reprod Domest Anim 2019; 54:138-149. [PMID: 30098220 DOI: 10.1111/rda.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022]
Abstract
In recent years, induced pluripotent stem cells (iPSCs) technique is able to allow us to generate pluripotency from somatic cells in vitro through the over expression of several transcription factors. Normally, viral vectors and transcription factors are commonly used on iPSC technique, which could cause many barriers on further application. In this study, we attempt to process a new method to obtain pluripotency from goat somatic cells in vitro under fully chemically defined condition. The results showed that chemically induced pluripotent stem cells-like cells (CiPSC-like cells) colonies were generated from goat ear fibroblasts by fully small-molecule compounds. Those three dimensions colonies were similar with mouse iPSCs in morphology and had strong positive alkaline phosphatase (AP) activity and expressed pluripotency related genes OCT4, SOX2, NANOG, CDH1, TDGF, GDF3, DAX1, REX1, which determined by RT-PCR. Those colonies could also differentiate into different cell types derived from three germ layers proved by RT-PCR and immunofluorescence assays. The expression of glycolysis-related genes about PGAM1, KPYM2 and HXK2 in CiPSC-like colonies formation groups was significantly higher than their parental fibroblasts, but not in the non-CiPSC-like colonies formation group. The expression of histone acetylation and methylation-related genes, HAT1 and SMYD3, was not significantly up-regulated within different groups compared to their parental fibroblasts, respectively. Yet, the expression of histone methylation-related gene, KDM5B, was significantly up-regulated on the cells from non-colonies formation group compared to parental fibroblasts, but the expression of KDM5B of the cells from CiPSC-like cell colonies was not significantly difference compared to that of parental fibroblasts. In conclusion, this is the first report that CiPSC-like cells could be generated in vitro from goat rather than just mouse under fully chemically defined condition. The generation of CiPSC-like colonies may be depended on the correct modification of energy metabolism and histone epigenetic during the reprogramming, rather than just the over-expression of those pluripotency-related genes. This study will strongly support us to further establish the stable goat CiPSC lines without any integration of exogenous genes.
Collapse
Affiliation(s)
- Lanyu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Dandan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yanyan Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Sheng Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Beibei Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shulin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jam Zaheer Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Mengmei Li
- School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Ben Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China.,School of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Sabapathy V, Kumar S. hiPSC-derived iMSCs: NextGen MSCs as an advanced therapeutically active cell resource for regenerative medicine. J Cell Mol Med 2016; 20:1571-88. [PMID: 27097531 PMCID: PMC4956943 DOI: 10.1111/jcmm.12839] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/14/2016] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are being assessed for ameliorating the severity of graft‐versus‐host disease, autoimmune conditions, musculoskeletal injuries and cardiovascular diseases. While most of these clinical therapeutic applications require substantial cell quantities, the number of MSCs that can be obtained initially from a single donor remains limited. The utility of MSCs derived from human‐induced pluripotent stem cells (hiPSCs) has been shown in recent pre‐clinical studies. Since adult MSCs have limited capability regarding proliferation, the quantum of bioactive factor secretion and immunomodulation ability may be constrained. Hence, the alternate source of MSCs is being considered to replace the commonly used adult tissue‐derived MSCs. The MSCs have been obtained from various adult and foetal tissues. The hiPSC‐derived MSCs (iMSCs) are transpiring as an attractive source of MSCs because during reprogramming process, cells undergo rejuvination, exhibiting better cellular vitality such as survival, proliferation and differentiations potentials. The autologous iMSCs could be considered as an inexhaustible source of MSCs that could be used to meet the unmet clinical needs. Human‐induced PSC‐derived MSCs are reported to be superior when compared to the adult MSCs regarding cell proliferation, immunomodulation, cytokines profiles, microenvironment modulating exosomes and bioactive paracrine factors secretion. Strategies such as derivation and propagation of iMSCs in chemically defined culture conditions and use of footprint‐free safer reprogramming strategies have contributed towards the development of clinically relevant cell types. In this review, the role of iPSC‐derived mesenchymal stromal cells (iMSCs) as an alternate source of therapeutically active MSCs has been described. Additionally, we also describe the role of iMSCs in regenerative medical applications, the necessary strategies, and the regulatory policies that have to be enforced to render iMSC's effectiveness in translational medicine.
Collapse
Affiliation(s)
- Vikram Sabapathy
- Center for Stem Cell Research, A Unit of inStem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| | - Sanjay Kumar
- Center for Stem Cell Research, A Unit of inStem Bengaluru, Christian Medical College, Vellore, Tamil Nadu, India
| |
Collapse
|
4
|
Zou Q, Wu M, Zhong L, Fan Z, Zhang B, Chen Q, Ma F. Development of a Xeno-Free Feeder-Layer System from Human Umbilical Cord Mesenchymal Stem Cells for Prolonged Expansion of Human Induced Pluripotent Stem Cells in Culture. PLoS One 2016; 11:e0149023. [PMID: 26882313 PMCID: PMC4755601 DOI: 10.1371/journal.pone.0149023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.
Collapse
Affiliation(s)
- Qing Zou
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
- Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Mingjun Wu
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
| | - Liwu Zhong
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
| | - Zhaoxin Fan
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
| | - Bo Zhang
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
| | - Qiang Chen
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
- Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
- * E-mail: (FM); (QC)
| | - Feng Ma
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
- Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (FM); (QC)
| |
Collapse
|