1
|
6-Formyl Umbelliferone, a Furanocoumarin from Angelica decursiva L., Inhibits Key Diabetes-Related Enzymes and Advanced Glycation End-Product Formation. Molecules 2022; 27:molecules27175720. [PMID: 36080485 PMCID: PMC9458250 DOI: 10.3390/molecules27175720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Over the years, great attention has been paid to coumarin derivatives, a set of versatile molecules that exhibit a wide variety of biological activities and have few toxic side effects. In this study, we investigated the antidiabetic potential of 6-formyl umbelliferone (6-FU), a novel furanocoumarin isolated from Angelica decursiva. Numerous pharmacological activities of 6-FU have been previously reported; however, the mechanism of its antidiabetic activity is unknown. Therefore, we examined the action of 6-FU on a few candidate-signaling molecules that may underlie its antidiabetic activity, including its inhibition of protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, human recombinant aldose reductase (HRAR), and advanced glycation end-product (AGE) formation (IC50 = 1.13 ± 0.12, 58.36 ± 1.02, 5.11 ± 0.21, and 2.15 ± 0.13 μM, respectively). A kinetic study showed that 6-FU exhibited mixed-type inhibition against α-glucosidase and HRAR and competitive inhibition of PTP1B. Docking simulations of 6-FU demonstrated negative binding energies and close proximity to residues in the binding pockets of those enzymes. We also investigated the molecular mechanisms underlying 6-FU's antidiabetic effects. 6-FU significantly increased glucose uptake and decreased PTP1B expression in insulin-resistant C2C12 skeletal muscle cells. Moreover, 6-FU (0.8-100 μM) remarkably inhibited the formation of fluorescent AGEs in glucose-fructose-induced human serum albumin glycation over the course of 4 weeks. The findings clearly indicate that 6-FU will be useful in the development of multiple target-oriented therapeutic modalities for the treatment of diabetes and diabetes-related complications.
Collapse
|
2
|
Kadan S, Melamed S, Benvalid S, Tietel Z, Sasson Y, Zaid H. Gundelia tournefortii: Fractionation, Chemical Composition and GLUT4 Translocation Enhancement in Muscle Cell Line. Molecules 2021; 26:molecules26133785. [PMID: 34206320 PMCID: PMC8270329 DOI: 10.3390/molecules26133785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disease, which could affect the daily life of patients and increase their risk of developing other diseases. Synthetic anti-diabetic drugs usually show severe side effects. In the last few decades, plant-derived drugs have been intensively studied, particularly because of a rapid development of the instruments used in analytical chemistry. We tested the efficacy of Gundelia tournefortii L. (GT) in increasing the translocation of glucose transporter-4 (GLUT4) to the myocyte plasma membrane (PM), as a main strategy to manage T2D. In this study, GT methanol extract was sub-fractionated into 10 samples using flash chromatography. The toxicity of the fractions on L6 muscle cells, stably expressing GLUTmyc, was evaluated using the MTT assay. The efficacy with which GLUT4 was attached to the L6 PM was evaluated at non-toxic concentrations. Fraction 6 was the most effective, as it stimulated GLUT4 translocation in the absence and presence of insulin, 3.5 and 5.2 times (at 250 μg/mL), respectively. Fraction 1 and 3 showed no significant effects on GLUT4 translocation, while other fractions increased GLUT4 translocation up to 2.0 times. Gas chromatography-mass spectrometry of silylated fractions revealed 98 distinct compounds. Among those compounds, 25 were considered anti-diabetic and glucose disposal agents. These findings suggest that GT methanol sub-fractions exert an anti-diabetic effect by modulating GLUT4 translocation in L6 muscle cells, and indicate the potential of GT extracts as novel therapeutic agents for T2D.
Collapse
Affiliation(s)
- Sleman Kadan
- Qasemi Research Center, Al-Qasemi Academic College, Baqa El-Gharbia 30100, Israel;
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel;
| | - Sarit Melamed
- Department of Food Science, Gilat Research Center, Agricultural Research Organization—Volcani Institute, M.P. Negev 8531100, Israel; (S.M.); (Z.T.)
| | - Shoshana Benvalid
- Regional Research and Development Center, Judea Center, Kiryat Arba 90100, Israel;
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization—Volcani Institute, M.P. Negev 8531100, Israel; (S.M.); (Z.T.)
| | - Yoel Sasson
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel;
| | - Hilal Zaid
- Qasemi Research Center, Al-Qasemi Academic College, Baqa El-Gharbia 30100, Israel;
- Faculty of Sciences and Faculty of Medicine, Arab American University, P.O. Box 240, Jenin 009704, Palestine
- Correspondence: ; Tel.: +972-4-6286761 or +972-4-6286765
| |
Collapse
|
3
|
Yousof Ali M, Jannat S, Mizanur Rahman M. Investigation of C-glycosylated apigenin and luteolin derivatives’ effects on protein tyrosine phosphatase 1B inhibition with molecular and cellular approaches. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.comtox.2020.100141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Yousof Ali M, Zaib S, Mizanur Rahman M, Jannat S, Iqbal J, Kyu Park S, Seog Chang M. Poncirin, an orally active flavonoid exerts antidiabetic complications and improves glucose uptake activating PI3K/Akt signaling pathway in insulin resistant C2C12 cells with anti-glycation capacities. Bioorg Chem 2020; 102:104061. [PMID: 32653611 DOI: 10.1016/j.bioorg.2020.104061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/18/2020] [Accepted: 06/28/2020] [Indexed: 12/26/2022]
Abstract
Poncirin, a natural flavanone glycoside present abundantly in many citrus fruits, contains an extensive range of biological activities. However, the antidiabetic mechanism of poncirin is unexplored yet. In this study, we examined the anti-diabetic prospective of poncirin by evaluating its ability to inhibit protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, human recombinant AR (HRAR), rat lens aldose reductase (RLAR), and advanced glycation end-product (AGE) formation (IC50 = 7.76 ± 0.21, 21.31 ± 1.26, 3.56 ± 0.33, 11.91 ± 0.21, and 3.23 ± 0.09 µM, respectively). Kinetics data and docking studies showed the lowest binding energy and highestaffinityforthemixed and competitivetypeof inhibitorsof poncirin. Moreover, the molecular mechanisms underlying the antidiabetic outcomes of poncirin in insulin resistant C2C12 skeletal muscle cells were explored, which significantly increased glucose uptake and decreased the expression of PTP1B in C2C12 cells. Consequently, poncirin increased GLUT-4 expression level by activating the IRS-1/PI3K/Akt/GSK-3 signaling pathway. Moreover, poncirin (0.5-50 µM) remarkably inhibited the formation of fluorescent AGE, nonfluorescent CML, fructosamine, and β-cross amyloid structures in glucose-fructose-induced BSA glycation during 4 weeks of study. Poncirin also notably prevented protein oxidation demonstrated with decreasing the protein carbonyl and the consumption of protein thiol in the dose-dependent manner. The results clearly expressed the promising activity of poncirin for the therapy of diabetes and its related complications.
Collapse
Affiliation(s)
- Md Yousof Ali
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore 54590, Pakistan
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Susoma Jannat
- Department of Biochemistry and Molecular Biology, University of Calgary, T2N 1N4 Alberta, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Seong Kyu Park
- Department of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Mun Seog Chang
- Department of Korean Medicine, Graduate School, Kyung Hee University, 26, Kyunghee dae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
5
|
Elbadawi-Sidhu M, Baillie RA, Zhu H, Chen YDI, Goodarzi MO, Rotter JI, Krauss RM, Fiehn O, Kaddurah-Daouk R. Pharmacometabolomic signature links simvastatin therapy and insulin resistance. Metabolomics 2017; 13:11. [PMID: 29732238 PMCID: PMC5931366 DOI: 10.1007/s11306-016-1141-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 11/26/2016] [Indexed: 02/05/2023]
Abstract
Introduction Statins, widely prescribed drugs for treatment of cardiovascular disease, inhibit the biosynthesis of low density lipoprotein cholesterol (LDL-C). Despite providing major benefits, sub populations of patients experience adverse effects, including muscle myopathy and development of type II diabetes mellitus (T2DM) that may result in premature discontinuation of treatment. There are no reliable biomarkers for predicting clinical side effects in vulnerable individuals. Pharmacometabolomics provides powerful tools for identifying global biochemical changes induced by statin treatment, providing insights about drug mechanism of action, development of side effects and basis of variation of response. Objective To determine whether statin-induced changes in intermediary metabolism correlated with statin-induced hyperglycemia and insulin resistance; to identify pre-drug treatment metabolites predictive of post-drug treatment increased diabetic risk. Methods Drug-naïve patients were treated with 40 mg/day simvastatin for 6 weeks in the Cholesterol and Pharmacogenetics (CAP) study; metabolomics by gas chromatography-time-of-flight mass-spectrometry (GC-TOF-MS) was performed on plasma pre and post treatment on 148 of the 944 participants. Results Six weeks of simvastatin treatment resulted in 6.9% of patients developing hyperglycemia and 25% developing changes consistent with development of pre-diabetes. Altered beta cell function was observed in 53% of patients following simvastatin therapy and insulin resistance was observed in 54% of patients. We identified initial signature of simvastatin-induced insulin resistance, including ethanolamine, hydroxylamine, hydroxycarbamate and isoleucine which, upon further replication and expansion, could be predictive biomarkers of individual susceptibility to simvastatin-induced new onset pre-type II diabetes mellitus. No patients were clinically diagnosed with T2DM. Conclusion Within this short 6 weeks study, some patients became hyperglycemic and/or insulin resistant. Diabetic markers were associated with decarboxylated small aminated metabolites as well as a branched chain amino acid directly linked to glucose metabolism and fatty acid biosynthesis. Pharmacometabolomics provides powerful tools for precision medicine by predicting development of drug adverse effects in sub populations of patients. Metabolic profiling prior to start of drug therapy may empower physicians with critical information when prescribing medication and determining prognosis.
Collapse
Affiliation(s)
- Mona Elbadawi-Sidhu
- West Coast Metabolomics Center, Genome Center, University of California - Davis, Davis, CA, USA
| | | | - Hongjie Zhu
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research, Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research, Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, Genome Center, University of California - Davis, Davis, CA, USA
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rima Kaddurah-Daouk
- Department of Internal Medicine; Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
6
|
Hasanvand A, Amini-Khoei H, Hadian MR, Abdollahi A, Tavangar SM, Dehpour AR, Semiei E, Mehr SE. Anti-inflammatory effect of AMPK signaling pathway in rat model of diabetic neuropathy. Inflammopharmacology 2016; 24:207-219. [PMID: 27506528 DOI: 10.1007/s10787-016-0275-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023]
Abstract
Diabetic neuropathy (DN) is characterized as Hyperglycemia activates thdisturbed nerve conduction and progressive chronic pain. Inflammatory mediators, particularly cytokines, have a determinant role in the pathogenesis of neuropathic pain. The activity of adenosine monophosphate protein kinase (AMPK), an energy charge sensor with neuroprotective properties, is decreased in diabetes. It has been reported that activation of AMPK reduces the systemic inflammation through inhibition of cytokines. In this study, we aimed to investigate the probable protective effects of AMPK on DN in a rat of diabetes. DN was induced by injection of streptozotocin (65 mg/kg, i.p.). Motor nerve conduction velocities (MNCV) of the sciatic nerve, as an electrophysiological marker for peripheral nerve damage, were measured. Plasma levels of IL-6, TNF-α, CRP were assessed as relevant markers for inflammatory response. Also, the expression of phosphorylated AMPK (p-AMPK) and non-phosphorylated (non-p-AMPK) was evaluated by western blotting in the dorsal root ganglia. Histopathological assessment was performed to determine the extent of nerve damage in sciatic nerve. Our findings showed that activation of AMPK by metformin (300 mg/kg) significantly increased the MNCV and reduced the levels of inflammatory cytokines. In addition, we showed that administration of metformin increased the expression of p-AMPK as well as decline in the level of non p-AMPK. Our results demonstrated that co-administration of dorsomorphin with metformin reversed the beneficial effects of metformin. In conclusion, the results of this study demonstrated that the activation of AMPK signaling pathway in diabetic neuropathy might be associated with the anti-inflammatory response.
Collapse
Affiliation(s)
- Amin Hasanvand
- Department of Pharmacology, School of Medicine, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Amini-Khoei
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Hadian
- Department of Physical Therapy, Rehabilitation Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Khomini Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elika Semiei
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaei Mehr
- Department of Pharmacology, School of Medicine, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Effects of Icariin on insulin resistance via the activation of AMPK pathway in C2C12 mouse muscle cells. Eur J Pharmacol 2015; 758:60-3. [DOI: 10.1016/j.ejphar.2015.03.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/12/2015] [Accepted: 03/23/2015] [Indexed: 12/28/2022]
|
8
|
Tziouris PA, Tsiafoulis CG, Vlasiou M, Miras HN, Sigalas MP, Keramidas AD, Kabanos TA. Interaction of chromium(III) with a N,N'-disubstituted hydroxylamine-(diamido) ligand: a combined experimental and theoretical study. Inorg Chem 2014; 53:11404-14. [PMID: 25329981 DOI: 10.1021/ic501778d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reaction of hydroxylamine hydrochloride with prop-2-enamide in dichloromethane in the presence of triethylamine resulted in the isolation of the N,N'-disubstituted hydroxylamine-(diamido) ligand, 3,3'-(hydroxyazanediyl)dipropanamide (Hhydia). The ligand Hhydia was characterized by multinuclear NMR, high-resolution electrospray ionization mass spectrometry (ESI-MS), and X-ray structure analysis. Interaction of Hhydia with trans-[Cr(III)Cl2(H2O)4]Cl·2H2O in ethanol yields the ionization isomers [Cr(III)(Hhydia)2]Cl3·2H2O(1·2H2O) and cis/trans-[Cr(III)Cl2(Hhydia)2]Cl·2H2O (2·2H2O). The X-ray structure analysis of 1 revealed that the chromium atom in [Cr(III)(Hhydia)2](3+) is bonded to two neutral tridentate O,N,O-Hhydia ligands. The twist angle, θ, in [Cr(III)(Hhydia)2](3+) is 54.5(6)(0), that is, very close to an ideal octahedron. The intramolecular hydrogen bonds developed between the N-OH group of the first ligand and the amidic oxygen atom of the second ligand and vice versa contribute to the overall stability of the cation [Cr(III)(Hhydia)2](3+). The reaction rate constant of the formation of Cr(III) complexes 1·2H2O and 2·2H2O was found to be 8.7(±0.8) × 10(-5) M(-1) s(-1) at 25 °C in methyl alcohol and follows a first-order law kinetics based on the biologically relevant ligand Hhydia. The reaction rate constant is considerably faster in comparison with the corresponding water exchange rate constant for the hydrated chromium(III). The modification of the kinetics is of fundamental importance for the chromium(III) chemistry in biological systems. Ultraviolet-visible and electron paramagnetic resonance studies, both in solution and in the solid state, ESI-MS, and conductivity measurements support the fact that, irrespective of the solvent used in the interaction of Hhydia with trans-[Cr(III)Cl2(H2O)4]Cl·2H2O, the ionization isomers[Cr(III)(Hhydia)2]Cl3·2H2O (1·2H2O) and cis/trans-[Cr(III)Cl2(Hhydia)2]Cl·2H2O (2·2H2O) are produced.The reaction medium affects only the relevant percentage of the isomers in the solid state. The thermodynamic stability of the ionization isomers 1·2H2O and cis/trans-2·2H2O, their molecular structures as well as the vibrational spectra and the energetics of the Cr(III)- Hhydia/hydia(-) were studied by means of density functional theory calculations and found to be in excellent agreement with our experimental observations.
Collapse
Affiliation(s)
- Petros A Tziouris
- Section of Inorganic and Analytical Chemistry, Department of Chemistry and #NMR Center, University of Ioannina , Ioannina 45110, Greece
| | | | | | | | | | | | | |
Collapse
|