1
|
Jin T, Hao X, Huang Z, Zhang X, Li S, Yang Y, Long W. Genome-Wide Identification of the GS3 Gene Family and the Influence of Natural Variations in BnGS3-3 on Salt and Cold Stress Tolerance in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2025; 14:1145. [PMID: 40219212 PMCID: PMC11991296 DOI: 10.3390/plants14071145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Saline-alkali stress and cold damage significantly impact the yield of Brassica napus. G proteins play a crucial role in plant resistance to abiotic stresses, and research on G proteins in Brassica napus (rapeseed) is still in its early stages. In this study, we employed bioinformatics tools to systematically investigate the basic physicochemical properties, phylogenetic relationships, distribution, gene structure, cis-regulatory elements, and expansion patterns of the GS3 gene family in Brassica napus. Additionally, reverse transcription polymerase chain reaction (RT-PCR) was used to analyze the response of the BnGS3-3 gene to salt and low-temperature stresses. Natural variations were found in the promoter region of BnGS3-3. By conducting a promoter-driven luciferase (LUC) assay, the relationship between natural variations in the BnGS3-3 promoter and salt and cold tolerance was analyzed. Furthermore, the impact of these natural variations on flowering time, root length, and yield was explored using phenotypic data from a population. Our research results aim to provide insights into the function and molecular mechanisms of BnGS3-3 in Brassica napus, and to offer valuable genetic resources for molecular breeding to improve salt and low-temperature tolerance in Brassica napus.
Collapse
Affiliation(s)
- Ting Jin
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (T.J.); (Y.Y.)
| | - Xiaoshuai Hao
- College of Agronomy, Nanjing Agricultural University, Nanjing 211800, China;
| | - Zhen Huang
- College of Agronomy, Northwest A&F University, Yangling 712100, China;
| | - Xingguo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China;
| | - Shimeng Li
- Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China;
| | - Ying Yang
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (T.J.); (Y.Y.)
| | - Weihua Long
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (T.J.); (Y.Y.)
| |
Collapse
|
2
|
Verslues PE, Upadhyay-Tiwari N. Nonphototrophic hypocotyl 3 domain proteins: traffic directors, hitchhikers, or both? THE NEW PHYTOLOGIST 2024; 244:1723-1731. [PMID: 39425258 DOI: 10.1111/nph.20211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024]
Abstract
The nonphototrophic hypocotyl 3 (NPH3) domain is plant specific and of unknown function. It is nearly always attached to an N-terminal BTB domain and a largely unstructured C-terminal region. Recent reports revealed NPH3-domain GTPase activity and connection to intracellular trafficking, condensate formation, membrane attachment of the C-terminal region for some NPH3-domain proteins and, at the physiological level, drought-related function for at least one NPH3-domain protein. We integrate these new ideas of NPH3-domain protein function into two, nonexclusive, working models: the 'traffic director' model, whereby NPH3-domain proteins regulate intracellular trafficking and, the 'hitchhiker' model whereby NPH3-domain proteins ride the trafficking system to find ubiquitination targets. Determining which model best applies to uncharacterized NPH3-domain proteins will contribute to understanding intracellular trafficking and environmental responses.
Collapse
Affiliation(s)
- Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Neha Upadhyay-Tiwari
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
3
|
Yadav P, Khatri N, Gupta R, Mudgil Y. Proteomic profiling of Arabidopsis G-protein β subunit AGB1 mutant under salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:571-586. [PMID: 38737318 PMCID: PMC11087450 DOI: 10.1007/s12298-024-01448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 05/14/2024]
Abstract
Salt stress is a limiting environmental factor that inhibits plant growth in most ecological environments. The functioning of G-proteins and activated downstream signaling during salt stress is well established and different G-protein subunits and a few downstream effectors have been identified. Arabidopsis G-protein β-subunit (AGB1) regulates the movement of Na+ from roots to shoots along with a significant role in controlling Na+ fluxes in roots, however, the molecular mechanism of AGB1 mediated salt stress regulation is not well understood. Here, we report the comparative proteome profiles of Arabidopsis AGB1 null mutant agb1-2 to investigate how the absence of AGB1 modulates the protein repertoire in response to salt stress. High-resolution two-dimensional gel electrophoresis (2-DE) showed 27 protein spots that were differentially modulated between the control and NaCl treated agb1-2 seedlings of which seven were identified by mass spectrometry. Functional annotation and interactome analysis indicated that the salt-responsive proteins were majorly associated with cellulose synthesis, structural maintenance of chromosomes, DNA replication/repair, organellar RNA editing and indole glucosinolate biosynthesis. Further exploration of the functioning of these proteins could serve as a potential stepping stone for dissection of molecular mechanism of AGB1 functions during salt stress and in long run could be extrapolated to crop plants for salinity stress management.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Nisha Khatri
- Department of Botany, University of Delhi, New Delhi, 110007 India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707 South Korea
| | - Yashwanti Mudgil
- Department of Botany, University of Delhi, New Delhi, 110007 India
| |
Collapse
|
4
|
Xu D, Tang W, Ma Y, Wang X, Yang Y, Wang X, Xie L, Huang S, Qin T, Tang W, Xu Z, Li L, Tang Y, Chen M, Ma Y. Arabidopsis G-protein β subunit AGB1 represses abscisic acid signaling via attenuation of the MPK3-VIP1 phosphorylation cascade. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1615-1632. [PMID: 37988280 DOI: 10.1093/jxb/erad464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Heterotrimeric G proteins play key roles in cellular processes. Although phenotypic analyses of Arabidopsis Gβ (AGB1) mutants have implicated G proteins in abscisic acid (ABA) signaling, the AGB1-mediated modules involved in ABA responses remain unclear. We found that a partial AGB1 protein was localized to the nucleus where it interacted with ABA-activated VirE2-interacting protein 1 (VIP1) and mitogen-activated protein kinase 3 (MPK3). AGB1 acts as an upstream negative regulator of VIP1 activity by initiating responses to ABA and drought stress, and VIP1 regulates the ABA signaling pathway in an MPK3-dependent manner in Arabidopsis. AGB1 outcompeted VIP1 for interaction with the C-terminus of MPK3, and prevented phosphorylation of VIP1 by MPK3. Importantly, ABA treatment reduced AGB1 expression in the wild type, but increased in vip1 and mpk3 mutants. VIP1 associates with ABA response elements present in the AGB1 promoter, forming a negative feedback regulatory loop. Thus, our study defines a new mechanism for fine-tuning ABA signaling through the interplay between AGB1 and MPK3-VIP1. Furthermore, it suggests a common G protein mechanism to receive and transduce signals from the external environment.
Collapse
Affiliation(s)
- Dongbei Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Wensi Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yanan Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Xia Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaoting Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Lina Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Suo Huang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Tengfei Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Weilin Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhaoshi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yimiao Tang
- Institute of Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Youzhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| |
Collapse
|
5
|
Ku YS, Cheung MY, Cheng SS, Nadeem MA, Chung G, Lam HM. Using the Knowledge of Post-transcriptional Regulations to Guide Gene Selections for Molecular Breeding in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:867731. [PMID: 35432392 PMCID: PMC9009170 DOI: 10.3389/fpls.2022.867731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The omics approaches allow the scientific community to successfully identify genomic regions associated with traits of interest for marker-assisted breeding. Agronomic traits such as seed color, yield, growth habit, and stress tolerance have been the targets for soybean molecular breeding. Genes governing these traits often undergo post-transcriptional modifications, which should be taken into consideration when choosing elite genes for molecular breeding. Post-transcriptional regulations of genes include transcript regulations, protein modifications, and even the regulation of the translational machinery. Transcript regulations involve elements such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) for the maintenance of transcript stability or regulation of translation efficiency. Protein modifications involve molecular modifications of target proteins and the alterations of their interacting partners. Regulations of the translational machinery include those on translation factors and the ribosomal protein complex. Post-transcriptional regulations usually involve a set of genes instead of a single gene. Such a property may facilitate molecular breeding. In this review, we will discuss the post-transcriptional modifications of genes related to favorable agronomic traits such as stress tolerance, growth, and nutrient uptake, using examples from soybean as well as other crops. The examples from other crops may guide the selection of genes for marker-assisted breeding in soybean.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ming-Yan Cheung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, South Korea
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
6
|
Light-triggered and phosphorylation-dependent 14-3-3 association with NON-PHOTOTROPIC HYPOCOTYL 3 is required for hypocotyl phototropism. Nat Commun 2021; 12:6128. [PMID: 34675219 PMCID: PMC8531446 DOI: 10.1038/s41467-021-26332-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022] Open
Abstract
NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) is a key component of the auxin-dependent plant phototropic growth response. We report that NPH3 directly binds polyacidic phospholipids, required for plasma membrane association in darkness. We further demonstrate that blue light induces an immediate phosphorylation of a C-terminal 14-3-3 binding motif in NPH3. Subsequent association of 14-3-3 proteins is causal for the light-induced release of NPH3 from the membrane and accompanied by NPH3 dephosphorylation. In the cytosol, NPH3 dynamically transitions into membraneless condensate-like structures. The dephosphorylated state of the 14-3-3 binding site and NPH3 membrane recruitment are recoverable in darkness. NPH3 variants that constitutively localize either to the membrane or to condensates are non-functional, revealing a fundamental role of the 14-3-3 mediated dynamic change in NPH3 localization for auxin-dependent phototropism. This regulatory mechanism might be of general nature, given that several members of the NPH3-like family interact with 14-3-3 via a C-terminal motif. NPH3 is required for auxin-dependent plant phototropism. Here Reuter et al. show that NPH3 is a plasma membrane-bound phospholipid-binding protein and that in response to blue light, NPH3 is phosphorylated and associates with 14-3-3 proteins which leads to dissociation from the plasma membrane.
Collapse
|
7
|
Pandey S. Heterotrimeric G-Protein Signaling in Plants: Conserved and Novel Mechanisms. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:213-238. [PMID: 31035831 DOI: 10.1146/annurev-arplant-050718-100231] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Heterotrimeric GTP-binding proteins are key regulators of a multitude of signaling pathways in all eukaryotes. Although the core G-protein components and their basic biochemistries are broadly conserved throughout evolution, the regulatory mechanisms of G proteins seem to have been rewired in plants to meet specific needs. These proteins are currently the focus of intense research in plants due to their involvement in many agronomically important traits, such as seed yield, organ size regulation, biotic and abiotic stress responses, symbiosis, and nitrogen use efficiency. The availability of massive sequence information from a variety of plant species, extensive biochemical data generated over decades, and impressive genetic resources for plant G proteins have made it possible to examine their role, unique properties, and novel regulation. This review focuses on some recent advances in our understanding of the mechanistic details of this critical signaling pathway to enable the precise manipulation and generation of plants to meet future needs.
Collapse
Affiliation(s)
- Sona Pandey
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| |
Collapse
|
8
|
Song G, Brachova L, Nikolau BJ, Jones AM, Walley JW. Heterotrimeric G-Protein-Dependent Proteome and Phosphoproteome in Unstimulated Arabidopsis Roots. Proteomics 2018; 18:e1800323. [PMID: 30407730 PMCID: PMC6298806 DOI: 10.1002/pmic.201800323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/09/2018] [Indexed: 12/19/2022]
Abstract
The G-protein complex is a cytoplasmic on-off molecular switch that is set by plasma membrane receptors that activate upon binding of its cognate extracellular agonist. In animals, the default setting is the "off" resting state, while in plants, the default state is constitutively "on" but repressed by a plasma membrane receptor-like protein. De-repression appears to involve specific phosphorylation of key elements of the G-protein complex and possibly target proteins that are positioned downstream of this complex. To address this possibility, protein abundance and phosphorylation state are quantified in wild type and G-protein deficient Arabidopsis roots in the unstimulated resting state. A total of 3246 phosphorylated and 8141 non-modified protein groups are identified. It has been found that 428 phosphorylation sites decrease and 509 sites increase in abundance in the G-protein quadrupole mutant lacking an operable G-protein-complex. Kinases with known roles in G-protein signaling including MAP KINASE 6 and FERONIA are differentially phosphorylated along with many other proteins now implicated in the control of G-protein signaling. Taken together, these datasets will enable the discovery of novel proteins and biological processes dependent on G-protein signaling.
Collapse
Affiliation(s)
- Gaoyuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA USA
| | - Libuse Brachova
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Basil J. Nikolau
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Alan M. Jones
- Department of Biology and Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin W. Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA USA
| |
Collapse
|
9
|
Xu DB, Gao SQ, Ma YN, Wang XT, Feng L, Li LC, Xu ZS, Chen YF, Chen M, Ma YZ. The G-Protein β Subunit AGB1 Promotes Hypocotyl Elongation through Inhibiting Transcription Activation Function of BBX21 in Arabidopsis. MOLECULAR PLANT 2017; 10:1206-1223. [PMID: 28827171 DOI: 10.1016/j.molp.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 05/10/2023]
Abstract
Hypocotyl development in Arabidopsis thaliana is regulated by light and endogenous hormonal cues, making it an ideal model to study the interplay between light and endogenous growth regulators. BBX21, a B-box (BBX)-like zinc-finger transcription factor, integrates light and abscisic acid signals to regulate hypocotyl elongation in Arabidopsis. Heterotrimeric G-proteins are pivotal regulators of plant development. The short hypocotyl phenotype of the G-protein β-subunit (AGB1) mutant (agb1-2) has been previously identified, but the precise role of AGB1 in hypocotyl elongation remains enigmatic. Here, we show that AGB1 directly interacts with BBX21, and the short hypocotyl phenotype of agb1-2 is partially suppressed in agb1-2bbx21-1 double mutant. BBX21 functions in the downstream of AGB1 and overexpression of BBX21 in agb1-2 causes a more pronounced reduction in hypocotyl length, indicating that AGB1 plays an oppositional role in relation to BBX21 during hypocotyl development. Furthermore, we demonstrate that the C-terminal region of BBX21 is important for both its intracellular localization and its transcriptional activation activity that is inhibited by interaction with AGB1. ChIP assays showed that BBX21 specifically associates with its own promoter and with those of BBX22, HY5, and GA2ox1. which is not altered in agb1-2. These data suggest that the AGB1-BBX21 interaction only affects the transcriptional activation activity of BBX21 but has no effect on its DNA binding ability. Taken together, our data demonstrate that AGB1 positively promotes hypocotyl elongation through repressing BBX21 activity.
Collapse
Affiliation(s)
- Dong-Bei Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmen Wai, Nanjing, Jiangsu Province 210014, PR China
| | - Shi-Qing Gao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ya-Nan Ma
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Ting Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu Feng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lian-Cheng Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China
| | - Yao-Feng Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
10
|
Kumar R, Sharma A, Chandel I, Bisht NC. Pattern of expression and interaction specificity of multiple G-protein beta (Gβ) subunit isoforms with their potential target proteins reveal functional dominance of BjuGβ1 in the allotetraploid Brassica juncea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:22-30. [PMID: 28603081 DOI: 10.1016/j.plaphy.2017.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 06/07/2023]
Abstract
Heterotrimeric G-protein, consisting Gα, Gβ and Gγ subunits, interacts with various upstream and downstream effector (target) proteins to regulate a large array of conserved and species-specific biological functions. The targets of G-protein components are recently reported in model plant Arabidopsis thaliana; however limited information is available from crop species. In this study, we utilized yeast two-hybrid (Y2H) assay to screen the diversity of interacting partners of multiple Gβ subunit isoforms from allotetraploid Brassica juncea, a globally important oilseed and vegetable crop. The three BjuGβ genes (BjuGβ1-3), resulted from whole genome triplication event in Brassica lineage, showed distinct expression profile during plant developmental stages with maximal transcript abundance during reproductive stages. Protein-protein interaction of three BjuGβ proteins (bait) against the Y2H cDNA library (prey) identified a total of 14 and 1 non-redundant targets for BjuGβ1 and BjuGβ2, whereas BjuGβ3 screening surprisingly did not yield any genuine target, thereby suggesting functional dominance of BjuGβ1. The triplicated BjuGβ isoforms showed a high degree of interaction strength and specificity with the identified target proteins, which are known to be involved in diverse biological functions in plants. qRT-PCR analysis further indicated that the expression of BjuGβ-target genes was developmentally regulated under various tissue types studied and showed a high degree of co-expression pattern with the BjuGβ genes, particularly during flower and silique development in B. juncea. Taken together, our data provides novel insights on pattern of expression and interaction specificity governing functional divergence of multiple Gβ subunit proteins in polyploid B. juncea.
Collapse
Affiliation(s)
- Roshan Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aprajita Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ishita Chandel
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
11
|
Liu C, Xu Y, Long D, Cao B, Hou J, Xiang Z, Zhao A. Plant G-protein β subunits positively regulate drought tolerance by elevating detoxification of ROS. Biochem Biophys Res Commun 2017; 491:897-902. [PMID: 28754592 DOI: 10.1016/j.bbrc.2017.07.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
Heterotrimeric guanine-nucleotide-binding proteins (G-proteins) consist of α, β and γ subunits and play important roles in response and tolerance to abiotic stresses in plants, but the function of the heterotrimeric G-protein β subunit in response to drought remains unclear. In the present study, the AGB1 mutants (agb1-2-1 and agb1-3-2) were more sensitive to drought than the wild-type. The overexpression of mulberry (Morus alba L.) G-protein β subunit in transgenic tobacco (Nicotiana tabacum L.) significantly enhanced the plants' drought tolerance. The transgenic tobacco plants had higher proline contents and peroxidase activities, and lower malonaldehyde and hydrogen peroxide contents and superoxide free radical accumulations under drought conditions. Additionally, transcript levels of the tobacco antioxidative genes, NtSOD and NtCAT, increased in drought-stressed transgenic tobacco plants. Thus, the heterotrimeric G-protein β subunits positively regulate drought tolerance in plants.
Collapse
Affiliation(s)
- Changying Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Yazhen Xu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Dingpei Long
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Boning Cao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Jiamin Hou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400716, China.
| |
Collapse
|
12
|
Zhang M, Takano T, Liu S, Zhang X. Arabidopsismitochondrial voltage-dependent anion channel 3 (AtVDAC3) protein interacts with thioredoxin m2. FEBS Lett 2015; 589:1207-13. [DOI: 10.1016/j.febslet.2015.03.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/20/2015] [Accepted: 03/29/2015] [Indexed: 10/23/2022]
|