1
|
Yu M, He X, Liu T, Li J. lncRNA GPRC5D-AS1 as a ceRNA inhibits skeletal muscle aging by regulating miR-520d-5p. Aging (Albany NY) 2023; 15:13980-13997. [PMID: 38100482 PMCID: PMC10756129 DOI: 10.18632/aging.205279] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/23/2023] [Indexed: 12/17/2023]
Abstract
Sarcopenia induced by muscle aging is associated with negative outcomes in a variety of diseases. Long non-coding RNAs are a class of RNAs longer than 200 nucleotides with lower protein coding potential. An increasing number of studies have shown that lncRNAs play a vital role in skeletal muscle development. According to our previous research, lncRNA GPRC5D-AS1 is selected in the present study as the target gene to further study its effect on skeletal muscle aging in a dexamethasone-induced human muscle atrophy cell model. As a result, GPRC5D-AS1 functions as a ceRNA of miR-520d-5p to repress cell apoptosis and regulate the expression of muscle regulatory factors, including MyoD, MyoG, Mef2c and Myf5, thus accelerating myoblast proliferation and differentiation, facilitating development of skeletal muscle. In conclusion, lncRNA GPRC5D-AS1 could be a novel therapeutic target for treating sarcopenia.
Collapse
Affiliation(s)
- Miao Yu
- Department of Geriatrics and Special Medical Treatment, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiuting He
- Department of Geriatrics and Special Medical Treatment, The First Hospital of Jilin University, Changchun 130021, China
| | - Ting Liu
- Department of Geriatrics and Special Medical Treatment, The First Hospital of Jilin University, Changchun 130021, China
| | - Jie Li
- Department of Geriatrics and Special Medical Treatment, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
2
|
Lohberger B, Glaenzer D, Eck N, Steinecker-Frohnwieser B, Leithner A, Rinner B, Kerschbaum-Gruber S, Georg D. Effects of a combined therapy of bortezomib and ionizing radiation on chondrosarcoma three-dimensional spheroid cultures. Oncol Lett 2021; 21:428. [PMID: 33868466 PMCID: PMC8045153 DOI: 10.3892/ol.2021.12689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Chondrosarcomas represent a heterogeneous group of primary bone cancers that are characterized by hyaline cartilaginous neoplastic tissue and are predominantly resistant to radiation and chemotherapy. However, adjuvant radiotherapy is often recommended in inoperable cases or after incomplete resections. To improve the efficiency of treatment, the present study tested a combination therapy with ionizing radiation (IR) and the proteasome inhibitor bortezomib. Using a three-dimensional (3D) spheroid model, 0-20 Gy of IR was applied to chondrosarcoma cells and healthy human chondrocytes. Following combined treatment with IR and bortezomib, the cell cycle distribution, apoptotic induction, the survivin pathway, autophagy and DNA damage were evaluated. Both cell types exhibited a slight decrease in viability following increasing doses of IR; the chondrosarcoma cells demonstrated a significant dose-dependent increase in the expression levels of the DNA damage marker histone H2AX phosphorylation at serine 139 (γH2AX). The combination treatment with bortezomib significantly decreased the cell viability after 48 h compared with that in irradiated cells. High-dose IR induced a G2/M phase arrest, which was accompanied by a decrease in the number of cells at the G1 and S phase. Co-treatment with bortezomib changed the distribution of the cell cycle phases. The mRNA expression levels of the proapoptotic genes Bcl-2-associated X protein (Bax) and Bak were significantly increased by bortezomib treatment and combination therapy with IR. In addition, the combination therapy resulted in a synergistic decrease of the expression levels of survivin and its corresponding downstream pathway molecules, including heat shock protein 90, X-linked inhibitor of apoptosis protein, smad 2 and smad 3. Comparative analyses of γH2AX at 1 and 24 h post-IR revealed efficient DNA repair in human chondrosarcoma cells. Therefore, additional bortezomib treatment may only temporarily improve the radiation sensitivity of chondrosarcoma cells. However, the inhibition of the survivin pathway by the combined treatment with IR and bortezomib, observed in the present study, revealed a novel aspect in the tumor biology of chondrosarcoma 3D spheroid cultures and may represent a potential target for therapy.
Collapse
Affiliation(s)
- Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, A-8036 Graz, Austria
| | - Dietmar Glaenzer
- Department of Orthopedics and Trauma, Medical University of Graz, A-8036 Graz, Austria
- Department for Rehabilitation, Ludwig Boltzmann Institute for Arthritis and Rehabilitation, A-5760 Saalfelden, Austria
| | - Nicole Eck
- Department of Orthopedics and Trauma, Medical University of Graz, A-8036 Graz, Austria
- Department for Rehabilitation, Ludwig Boltzmann Institute for Arthritis and Rehabilitation, A-5760 Saalfelden, Austria
| | | | - Andreas Leithner
- Department of Orthopedics and Trauma, Medical University of Graz, A-8036 Graz, Austria
| | - Beate Rinner
- Division of Biomedical Research, Medical University of Graz, A-8036 Graz, Austria
| | | | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, A-1090 Vienna, Austria
- MedAustron Ion Therapy Center, A-2700 Wiener Neustadt, Austria
| |
Collapse
|
3
|
Pancheri E, Guglielmi V, Wilczynski GM, Malatesta M, Tonin P, Tomelleri G, Nowis D, Vattemi G. Non-Hematologic Toxicity of Bortezomib in Multiple Myeloma: The Neuromuscular and Cardiovascular Adverse Effects. Cancers (Basel) 2020; 12:cancers12092540. [PMID: 32906684 PMCID: PMC7563977 DOI: 10.3390/cancers12092540] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is a still uncurable tumor of mainly elderly patients originating from the terminally differentiated B cells. Introduction to the treatment of MM patients of a new class of drugs called proteasome inhibitors (bortezomib followed by carfilzomib and ixazomib) significantly improved disease control. Proteasome inhibitors interfere with the major mechanism of protein degradation in a cell leading to the severe imbalance in the protein turnover that is deadly to MM cells. Currently, these drugs are the mainstream of MM therapy but are also associated with an increased rate of the injuries to multiple organs and tissues. In this review, we summarize the current knowledge on the molecular mechanisms of the first-in-class proteasome inhibitor bortezomib-induced disturbances in the function of peripheral nerves and cardiac and skeletal muscle. Abstract The overall approach to the treatment of multiple myeloma (MM) has undergone several changes during the past decade. and proteasome inhibitors (PIs) including bortezomib, carfilzomib, and ixazomib have considerably improved the outcomes in affected patients. The first-in-class selective PI bortezomib has been initially approved for the refractory forms of the disease but has now become, in combination with other drugs, the backbone of the frontline therapy for newly diagnosed MM patients, as well as in the maintenance therapy and relapsed/refractory setting. Despite being among the most widely used and highly effective agents for MM, bortezomib can induce adverse events that potentially lead to early discontinuation of the therapy with negative effects on the quality of life and outcome of the patients. Although peripheral neuropathy and myelosuppression have been recognized as the most relevant bortezomib-related adverse effects, cardiac and skeletal muscle toxicities are relatively common in MM treated patients, but they have received much less attention. Here we review the neuromuscular and cardiovascular side effects of bortezomib. focusing on the molecular mechanisms underlying its toxicity. We also discuss our preliminary data on the effects of bortezomib on skeletal muscle tissue in mice receiving the drug.
Collapse
Affiliation(s)
- Elia Pancheri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Valeria Guglielmi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Grzegorz M. Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology Warsaw, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Anatomy and Histology, University of Verona, 37134 Verona, Italy;
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Giuliano Tomelleri
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
| | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, 02-093 Warsaw, Poland;
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-093 Warsaw, Poland
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, 37134 Verona, Italy; (E.P.); (V.G.); (P.T.); (G.T.)
- Correspondence:
| |
Collapse
|
4
|
Penna F, Bonetto A, Aversa Z, Minero VG, Rossi Fanelli F, Costelli P, Muscaritoli M. Effect of the specific proteasome inhibitor bortezomib on cancer-related muscle wasting. J Cachexia Sarcopenia Muscle 2016; 7:345-54. [PMID: 27239411 PMCID: PMC4864285 DOI: 10.1002/jcsm.12050] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/04/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Muscle wasting, a prominent feature of cancer cachexia, is mainly caused by sustained protein hypercatabolism. The enhanced muscle protein degradation rates rely on the activity of different proteolytic systems, although the Adenosine triphosphate (ATP)-ubiquitin-proteasome-dependent pathway and autophagy have been shown to play a pivotal role. Bortezomib is a potent reversible and selective proteasome and NF-κB inhibitor approved for the clinical use, which has been shown to be effective in preventing muscle wasting in different catabolic conditions. The aim of the present study has been to investigate whether pharmacological inhibition of proteasome by bortezomib may prevent skeletal muscle wasting in experimental cancer cachexia. METHODS Cancer cachexia was induced in rats by intraperitoneal injection of Yoshida AH-130 ascites hepatoma cells and in mice by subcutaneous inoculation of C26 carcinoma cells. Animals were then further randomized to receive bortezomib. The AH-130 hosts were weighted and sacrificed under anaesthesia, on Days 3, 4, 5, and 7 after tumour inoculation, while C26-bearing mice were weighted and sacrificed under anaesthesia 12 days after tumour transplantation. NF-κB and proteasome activation, MuRF1 and atrogin-1 mRNA expression and beclin-1 protein levels were evaluated in the gastrocnemius of controls and AH-130 hosts. RESULTS Bortezomib administration in the AH-130 hosts, although able to reduce proteasome and NF-κB DNA-binding activity in the skeletal muscle on Day 7 after tumour transplantation, did not prevent body weight loss and muscle wasting. In addition, bortezomib exerted a transient toxicity, as evidenced by the reduced food intake and by the increase in NF-κB DNA-binding activity in the AH-130 hosts 3 days after tumour transplantation. Beclin-1 protein levels were increased by bortezomib treatment in Day 3 controls but were unchanged on both Days 3 and 7 in the AH-130 hosts, suggesting that an early compensatory induction of autophagy may exist in healthy but not in tumour-bearing animals. Regarding C26-bearing mice, bortezomib did not prevent as well body and muscle weight loss 12 days after tumour implantation. CONCLUSIONS The results obtained suggest that proteasome inhibition by bortezomib is not able to prevent muscle wasting in experimental cancer cachexia. Further studies are needed to address the issue whether a different dosage of bortezomib alone or in combination with other drugs modulating different molecular pathways may effectively prevent muscle wasting during cancer cachexia.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | - Andrea Bonetto
- Department of SurgeryIndiana University School of Medicine, IUPUIIndianapolisINUSA
| | - Zaira Aversa
- Department of Clinical Medicine, SapienzaUniversity of RomeRomeItaly
| | - Valerio Giacomo Minero
- Center of Experimental Research and Medical Studies (CeRMS)Città della Salute e della ScienzaTurinItaly
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Paola Costelli
- Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
| | | |
Collapse
|
5
|
Kwak HJ, Choi HE, Jang J, Park SK, Bae YA, Cheon HG. Bortezomib attenuates palmitic acid-induced ER stress, inflammation and insulin resistance in myotubes via AMPK dependent mechanism. Cell Signal 2016; 28:788-97. [PMID: 27049873 DOI: 10.1016/j.cellsig.2016.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 11/30/2022]
Abstract
Bortezomib is an anti-cancer agent that induces ER stress by inhibiting proteasomal degradation. However, the effects of bortezomib appear to be dependent on its concentration and cellular context. Since ER stress is closely related to type 2 diabetes, the authors examined the effects of bortezomib on palmitic acid (PA)-induced ER stress in C2C12 murine myotubes. At low concentrations (<20nM), bortezomib protected myotubes from PA (750μM)-induced ER stress and inflammation. Either tunicamycin or thapsigargin-induced ER stress was also reduced by bortezomib. In addition, reduced glucose uptake and Akt phosphorylation induced by PA were prevented by co-treating bortezomib (10nM) both in the presence or absence of insulin. These protective effects of bortezomib were found to be associated with reduced JNK phosphorylation. Furthermore, bortezomib-induced AMPK phosphorylation, and the protective effects of bortezomib were diminished by AMPK knockdown, suggesting that AMPK activation underlies the effects of bortezomib. The in vivo administration of bortezomib at nontoxic levels (at 50 or 200μg/kg, i.p.) twice weekly for 5weeks to ob/ob mice improved insulin resistance, increased AMPK phosphorylation, reduced ER stress marker levels, and JNK inhibition in skeletal muscle. The study shows that bortezomib reduces ER stress, inflammation, and insulin resistance in vitro and in vivo, and suggests that bortezomib has novel applications for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Hyun Jeong Kwak
- Department of Pharmacology, Gachon University School of Medicine, Incheon 406-799, Republic of Korea
| | - Hye-Eun Choi
- Department of Pharmacology, Gachon University School of Medicine, Incheon 406-799, Republic of Korea
| | - Jinsun Jang
- Department of Pharmacology, Gachon University School of Medicine, Incheon 406-799, Republic of Korea
| | - Soo Kyung Park
- Department of Pharmacology, Gachon University School of Medicine, Incheon 406-799, Republic of Korea
| | - Young-An Bae
- Department of Microbiology, Gachon University, Incheon 406-799, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Pharmacology, Gachon University School of Medicine, Incheon 406-799, Republic of Korea; Gachon Medical Research Institute, Gil Medical Center, Incheon 405-760, Republic of Korea.
| |
Collapse
|
6
|
Kim YG, Kang J, Kim H, Kim H, Kim HH, Kim JY, Lee Y. Bortezomib Inhibits Osteoclastogenesis and Porphyromonas gingivalis Lipopolysaccharide-induced Alveolar Bone Resorption. J Dent Res 2015; 94:1243-50. [DOI: 10.1177/0022034515592592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Healthy bone is maintained by the coordinated activities of osteoblast-mediated bone formation and osteoclast-dependent bone resorption. Pathologic conditions such as hormonal imbalance and inflammation cause increased osteoclastogenesis resulting in osteoporosis, rheumatoid arthritis, and periodontitis. Bortezomib is novel antimyeloma agent that has a direct beneficial effect on bone formation. However, the role of bortezomib in osteoclastogenesis and underlying mechanisms remains to be fully comprehended. In the present study, we show that bortezomib directly inhibited the receptor activator of nuclear factor κB ligand (RANKL)– and lipopolysaccharide-dependent osteoclast differentiation. Interestingly, the bortezomib-mediated inhibition of osteoclastogenesis was transient, since the removal of bortezomib from culture completely restored osteoclast differentiation. Bortezomib impeded the induction and nuclear localization of nuclear factor of activated T cells, cytoplasmic 1 and reduced both macrophage colony-stimulating factor– and RANKL-induced extracellular-signal-regulated kinase (ERK) phosphorylation. In a mouse model of periodontitis, bortezomib prevented alveolar bone erosion induced by Porphyromonas gingivalis lipopolysaccharide. These data not only suggest a previously unappreciated mechanism by which bortezomib regulates bone resorption but also propose novel applications of bortezomib beyond its use as an antimyeloma agent.
Collapse
Affiliation(s)
- Y.-G. Kim
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - J.H. Kang
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - H.J. Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - H.J. Kim
- Department of Physiology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - H.-H. Kim
- Department of Cell and Developmental Biology, School of Dentistry, Seoul National University, Seoul, Korea
| | - J.-Y. Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Y. Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Korea
| |
Collapse
|
7
|
Zhao Y, Zhang K, Li G, Zhang X, Shi D. Expression of GITR Enhances Multiple Myeloma Cell Sensitivity to Bortezomib. PLoS One 2015; 10:e0127334. [PMID: 25973846 PMCID: PMC4431824 DOI: 10.1371/journal.pone.0127334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/14/2015] [Indexed: 11/29/2022] Open
Abstract
Recently tumor necrosis factor receptor super family member 18 (TNFRSF18, also called GITR) has been identified as a novel tumor suppressor gene in Multiple Myeloma (MM), undergoing aberrant DNA methylation-mediated gene expression silencing. Furthermore, the expression of GITR blocks canonical NF-κB activation in MM cells in response to TNFα. Bortezomib, a proteasome inhibitor, can induce NF-κB activation, which may significantly influence the drug response in MM patients. In this study, we aim to elucidate if GITR status is associated with response to Bortezomib in MM cells through regulating GITR mediated NF-κB blockade. We found that GITR was significantly downregulated in MM patients and cell lines. Overexpression of GITR inhibited non-canonical NF-κB activation induced by TNFα. Moreover, NF-κB inhibitor induced apoptosis in GITR-deficient MM cells in response to TNFα. In addition, overexpression of GITR could inhibit Bortezomib-induced NF-κB activation and enhance the cytotoxicity of Bortezomib in GITR-deficient MM cell line (MM1.S). In contrast, knockdown of GITR attenuated the cytotoxic effect of Bortezomib on GITR proficient MM (RPMI) cell line and increased NF-κB activation. Finally, overexpression of GITR enhanced the sensitivity to Bortezomib in co-culture with bone marrow stromal cells and significantly reduced the tumor growth in MM1.S xenograft mice. In conclusion, we demonstrated that GITR expression can enhance the sensitivity to Bortezomib by inhibiting Bortezomib-induced NF-κB activation.
Collapse
Affiliation(s)
- Yinghao Zhao
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kun Zhang
- Centralaboratory, The Second Hospital of Jilin University, Changchun, China
| | - Guangquan Li
- Centralaboratory, The Second Hospital of Jilin University, Changchun, China
| | - Xingyi Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Donglei Shi
- Department of Thoracic Surgery, The Second Hospital of Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
8
|
McMillan EM, Paré MF, Baechler BL, Graham DA, Rush JWE, Quadrilatero J. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. PLoS One 2015; 10:e0119382. [PMID: 25799101 PMCID: PMC4370727 DOI: 10.1371/journal.pone.0119382] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/30/2015] [Indexed: 11/19/2022] Open
Abstract
Hypertension is a cardiovascular disease associated with deleterious effects in skeletal and cardiac muscle. Autophagy is a degradative process essential to muscle health. Acute exercise can alter autophagic signaling. Therefore, we aimed to characterize the effects of chronic endurance exercise on autophagy in skeletal and cardiac muscle of normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were assigned to a sedentary condition or 6 weeks of treadmill running. White gastrocnemius (WG) of hypertensive rats had higher (p<0.05) caspase-3 and proteasome activity, as well as elevated calpain activity. In addition, skeletal muscle of hypertensive animals had elevated (p<0.05) ATG7 and LC3I protein, LAMP2 mRNA, and cathepsin activity, indicative of enhanced autophagic signaling. Interestingly, chronic exercise training increased (p<0.05) Beclin-1, LC3, and p62 mRNA as well as proteasome activity, but reduced (p<0.05) Beclin-1 and ATG7 protein, as well as decreased (p<0.05) caspase-3, calpain, and cathepsin activity. Left ventricle (LV) of hypertensive rats had reduced (p<0.05) AMPKα and LC3II protein, as well as elevated (p<0.05) p-AKT, p-p70S6K, LC3I and p62 protein, which collectively suggest reduced autophagic signaling. Exercise training had little effect on autophagy-related signaling factors in LV; however, exercise training increased (p<0.05) proteasome activity but reduced (p<0.05) caspase-3 and calpain activity. Our results suggest that autophagic signaling is altered in skeletal and cardiac muscle of hypertensive animals. Regular aerobic exercise can effectively alter the proteolytic environment in both cardiac and skeletal muscle, as well as influence several autophagy-related factors in skeletal muscle of normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Elliott M. McMillan
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Marie-France Paré
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Drew A. Graham
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - James W. E. Rush
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|